Open Access
| Issue |
A&A
Volume 700, August 2025
|
|
|---|---|---|
| Article Number | A129 | |
| Number of page(s) | 21 | |
| Section | Numerical methods and codes | |
| DOI | https://doi.org/10.1051/0004-6361/202451887 | |
| Published online | 14 August 2025 | |
- Aihara, H., Arimoto, N., Armstrong, R., et al. 2017, PASJ, 70, s4 [Google Scholar]
- Arcelin, B., 2021, Theses, Université Paris Cité, France [Google Scholar]
- Arcelin, B., Doux, C., Aubourg, E., & Roucelle, C., 2020, MNRAS, 500, 531 [NASA ADS] [CrossRef] [Google Scholar]
- Barbary, K., 2016, J. Open Source Softw., 1, 58 [Google Scholar]
- Bertin, E., & Arnouts, S., 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bosch, J., Armstrong, R., Bickerton, S., et al. 2017, PASJ, 70, s5 [Google Scholar]
- Casura, S., Liske, J., Robotham, A. S. G., et al. 2022, MNRAS, 516, 942 [Google Scholar]
- Chen, X., Kingma, D. P., Salimans, T., et al. 2016, arXiv e-prints, [arXiv:1611.02731] [Google Scholar]
- Connolly, A. J., Angeli, G. Z., Chandrasekharan, S., et al. 2014, SPIE Conf. Ser., 9150, 915014 [NASA ADS] [Google Scholar]
- Engel, J., Hoffman, M., & Roberts, A., 2017, arXiv e-prints, [arXiv:1711.05772] [Google Scholar]
- Hansen, D. L., Mendoza, I., Liu, R., et al. 2022, in Machine Learning for Astrophysics, 27 [Google Scholar]
- Häußler, B., Vika, M., Bamford, S. P., et al. 2022, A&A, 664, A92 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Higgins, I., Matthey, L., Pal, A., et al. 2017, in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings (OpenReview.net) [Google Scholar]
- Hirata, C., & Seljak, U., 2003, MNRAS, 343, 459 [Google Scholar]
- Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [Google Scholar]
- Kingma, D. P., & Welling, M., 2013, arXiv e-prints, [arXiv:1312.6114] [Google Scholar]
- Kingma, D. P., & Ba, J., 2017, arXiv e-prints [arXiv:1412.6980] [Google Scholar]
- Lang, D., Hogg, D. W., & Mykytyn, D., 2016, Astrophysics Source Code Library [record ascl:1604.008] [Google Scholar]
- Lanusse, F., Melchior, P., & Moolekamp, F., 2019, arXiv e-prints, [arXiv:1912.03980] [Google Scholar]
- Lanusse, F., Mandelbaum, R., Ravanbakhsh, S., et al. 2021, MNRAS, 504, 5543 [CrossRef] [Google Scholar]
- LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009, arXiv e-prints, [arXiv:0912.0201] [Google Scholar]
- Lupton, R. H., 2005, SDSS Image Processing I: The Deblender, Tech. rep. [Google Scholar]
- MacCrann, N., Becker, M. R., McCullough, J., et al. 2021, MNRAS, 509, 3371 [CrossRef] [Google Scholar]
- Mandelbaum, R., 2018, ARA&A, 56, 393 [Google Scholar]
- Melchior, P., Moolekamp, F., Jerdee, M., et al. 2018, Astron. Comput., 24, 129 [Google Scholar]
- Melchior, P., Joseph, R., Sanchez, J., MacCrann, N., & Gruen, D., 2021, Nat. Rev. Phys., 3, 712 [NASA ADS] [CrossRef] [Google Scholar]
- Mendoza, I., Torchylo, A., Sainrat, T., et al. 2025, Open J. Astrophys., 8, E14 [Google Scholar]
- Papamakarios, G., Pavlakou, T., & Murray, I., 2017, arXiv e-prints, [arXiv:1705.07057] [Google Scholar]
- Refregier, A., Amara, A., Kitching, T. D., et al. 2010, arXiv e-prints, [arXiv:1001.0061] [Google Scholar]
- Reiman, D. M., & Göhre, B. E., 2019, MNRAS, 485, 2617 [NASA ADS] [CrossRef] [Google Scholar]
- Rezende, D., & Mohamed, S., 2015, in Proceedings of Machine Learning Research, 37, Proceedings of the 32nd International Conference on Machine Learning, eds. F. Bach, & D. Blei (Lille, France: PMLR), 1530 [Google Scholar]
- Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015, Astron. Comput., 10, 121 [Google Scholar]
- Salimans, T., Karpathy, A., Chen, X., & Kingma, D. P., 2017, arXiv e-prints, [arXiv:1701.05517] [Google Scholar]
- Sampson, M. L., Melchior, P., Ward, C., & Birmingham, S., 2024, Astron. Comput., 49, 100875 [Google Scholar]
- Sanchez, J., Mendoza, I., Kirkby, D. P., Burchat, P. R., & LSST Dark Energy Science Collaboration. 2021, J. Cosmology Astropart. Phys., 2021, 043 [Google Scholar]
- Schneider, P., 2006, Weak Gravitational Lensing (Springer Berlin Heidelberg), 269 [Google Scholar]
- Sheldon, E. S., Becker, M. R., MacCrann, N., & Jarvis, M., 2020, ApJ, 902, 138 [CrossRef] [Google Scholar]
- Spergel, D., Gehrels, N., Breckinridge, J., et al. 2013, arXiv e-prints, [arXiv:1305.5422] [Google Scholar]
- Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E., 2004, IEEE Trans. Image Process., 13, 600 [CrossRef] [Google Scholar]
- Wang, H., Sreejith, S., Slosar, A. C. V., Lin, Y., & Yoo, S. 2022, Phys. Rev. D, 106, 063023 [Google Scholar]
- Wright, A. H., Robotham, A. S. G., Bourne, N., et al. 2016, MNRAS, 460, 765 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.