Open Access
Issue
A&A
Volume 700, August 2025
Article Number A84
Number of page(s) 23
Section Interstellar and circumstellar matter
DOI https://doi.org/10.1051/0004-6361/202452828
Published online 06 August 2025
  1. Adachi, M., Hayakawa, S., Jørgensen, M., Oberhauser, H., & Osborne, M. A. 2022, in Advances in Neural Information Processing Systems, 35, eds. S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Curran Associates, Inc.), 16533 [Google Scholar]
  2. Adachi, M., Hayakawa, S., Hamid, S., et al. 2023a, ICML Workshop: Sampling and Optimization in Discrete Space, https://openreview.net/forum?id=aewcDfu3Zn [Google Scholar]
  3. Adachi, M., Kuhn, Y., Horstmann, B., et al. 2023b, IFAC-PapersOnLine, 56, 10521 [Google Scholar]
  4. Adachi, M., Planden, B., Howey, D., et al. 2024c, in International Conference on Artificial Intelligence and Statistics, PMLR, 505 [Google Scholar]
  5. Adachi, M., Hayakawa, S., Jørgensen, M., et al. 2024a, arXiv e-prints [arXiv:2404.12219] [Google Scholar]
  6. Adachi, M., Hayakawa, S., Jørgensen, M., et al. 2024b, in International Conference on Artificial Intelligence and Statistics, 238, PMLR, 496 [Google Scholar]
  7. Alaguero, A., Cuello, N., Ménard, F., et al. 2024, A&A, 687, A311 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. Belloche, A., Müller, H. S. P., Menten, K. M., Schilke, P., & Comito, C. 2013, A&A, 559, A47 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  9. Belloche, A., Garrod, R. T., Müller, H. S. P., & Menten, K. M. 2014, Science, 345, 1584 [Google Scholar]
  10. Belloche, A., Müller, H. S. P., Garrod, R. T., & Menten, K. M. 2016, A&A, 587, A91 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Bianchi, E., Codella, C., Ceccarelli, C., et al. 2019, MNRAS, 483, 1850 [Google Scholar]
  12. Bingham, E., Chen, J. P., Jankowiak, M., et al. 2019, J. Mach. Learn. Res., 20, 28:1 [Google Scholar]
  13. Bianchi, E., López-Sepulcre, A., Ceccarelli, C., et al. 2023, Faraday Discuss., 245, 164 [NASA ADS] [CrossRef] [Google Scholar]
  14. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. 2016, arXiv e-prints, [arXiv:1601.00670] [Google Scholar]
  15. Booth, A. S., Walsh, C., Terwisscha van Scheltinga, J., et al. 2021, Nat. Astron., 5, 684 [NASA ADS] [CrossRef] [Google Scholar]
  16. Busch, L. A., Belloche, A., Garrod, R. T., Müller, H. S. P., & Menten, K. M. 2024, A&A, 681, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Caselli, P., & Ceccarelli, C. 2012, A&A Rev., 20, 56 [NASA ADS] [CrossRef] [Google Scholar]
  18. Caselli, P., Walmsley, C. M., Zucconi, A., et al. 2002, ApJ, 565, 344 [Google Scholar]
  19. Ceccarelli, C., Caselli, P., Herbst, E., Tielens, A. G. G. M., & Caux, E. 2007, in Protostars and Planets V, eds. B. Reipurth, D. Jewitt, & K. Keil, 47 [Google Scholar]
  20. Ceccarelli, C., Caselli, P., Bockelée-Morvan, D., et al. 2014, in Protostars and Planets VI, eds. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 859 [Google Scholar]
  21. Ceccarelli, C., Codella, C., Balucani, N., et al. 2023, in Astronomical Society of the Pacific Conference Series, 534, Protostars and Planets VII, eds. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 379 [NASA ADS] [Google Scholar]
  22. Chahine, L., López-Sepulcre, A., Neri, R., et al. 2022, A&A, 657, A78 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Codella, C., López-Sepulcre, A., Ohashi, S., et al. 2022, MNRAS, 515, 543 [CrossRef] [Google Scholar]
  24. Coutens, A., Persson, M. V., Jørgensen, J. K., Wampfler, S. F., & Lykke, J. M. 2015, A&A, 576, A5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  25. Coutens, A., Loison, J. C., Boulanger, A., et al. 2022, A&A, 660, L6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  26. Czekala, I., Andrews, S. M., Mandel, K. S., Hogg, D. W., & Green, G. M. 2015, ApJ, 812, 128 [NASA ADS] [CrossRef] [Google Scholar]
  27. Dang, K.-D., Quiroz, M., Kohn, R., Tran, M.-N., & Villani, M. 2017, arXiv e-prints [arXiv:1708.00955] [Google Scholar]
  28. Dinh, L., Krueger, D., & Bengio, Y. 2014, arXiv e-prints [arXiv:1410.8516] [Google Scholar]
  29. Drozdovskaya, M. N., Dishoeck, E. F. v., Rubin, M., Jørgensen, J. K., & Altwegg, K. 2019, MNRAS, 490, 50 [NASA ADS] [CrossRef] [Google Scholar]
  30. Duvenaud, D. 2014, PhD thesis, University of Cambridge [Google Scholar]
  31. Endres, C. P., Schlemmer, S., Schilke, P., Stutzki, J., & Müller, H. S. P. 2016, J. Mol. Spectrosc., 327, 95 [NASA ADS] [CrossRef] [Google Scholar]
  32. Frank, P., Leike, R., & Enßlin, T. A. 2021, Entropy, 23, 853 [NASA ADS] [CrossRef] [Google Scholar]
  33. Frostig, R., Johnson, M. J., & Leary, C. 2018, Syst. Mach. Learn., 4 [Google Scholar]
  34. Gardner, J., Pleiss, G., Bindel, D., Weinberger, K. Q., & Wilson, A. G. 2018, arXiv e-prints [arXiv:1809.11165] [Google Scholar]
  35. Garrod, R. T., Widicus Weaver, S. L., & Herbst, E. 2008, ApJ, 682, 283 [Google Scholar]
  36. Geffner, T., & Domke, J. 2021, in Advances in Neural Information Processing Systems, 34, eds. M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan (Curran Associates, Inc.), 639 [Google Scholar]
  37. Ginsburg, A., Sokolov, V., de Val-Borro, M., et al. 2022, AJ, 163, 291 [NASA ADS] [CrossRef] [Google Scholar]
  38. Gray, R., & Neuhoff, D. 1998, IEEE Trans. Inform. Theory, 44, 2325 [Google Scholar]
  39. Habib, R., & Barber, D. 2019, in International Conference on Learning Representations, https://openreview.net/forum?id=r1NJqsRctX [Google Scholar]
  40. Hafner, A., Dawson, J. R., & Wardle, M. 2021, ApJ, 923, 261 [Google Scholar]
  41. Hayakawa, S., Oberhauser, H., & Lyons, T. 2022, Adv. Neural Inform. Process. Syst., 35, 6886 [Google Scholar]
  42. Hennig, P., Osborne, M. A., & Kersting, H. P. 2022, Probabilistic Numerics: Computation as Machine Learning (Cambridge University Press) [Google Scholar]
  43. Henshaw, J. D., Longmore, S. N., Kruijssen, J. M. D., et al. 2016, MNRAS, 457, 2675 [Google Scholar]
  44. Herbst, E., & van Dishoeck, E. F. 2009, ARA&A, 47, 427 [NASA ADS] [CrossRef] [Google Scholar]
  45. Hoffman, M. D., & Gelman, A. 2011, arXiv e-prints [arXiv:1111.4246] [Google Scholar]
  46. Hoffman, M., & Ma, Y.-A. 2020, in Proceedings of the 37th International Conference on Machine Learning, ICML’20 (JMLR.org) [Google Scholar]
  47. Hoffman, M., Blei, D. M., Wang, C., & Paisley, J. 2012, arXiv e-prints [arXiv:1206.7051] [Google Scholar]
  48. Jimenez Rezende, D., & Mohamed, S. 2015, arXiv e-prints [arXiv:1505.05770] [Google Scholar]
  49. Jiménez-Serra, I., Martín-Pintado, J., Rivilla, V. M., et al. 2020, Astrobiology, 20, 1048 [Google Scholar]
  50. Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A., et al. 2016, A&A, 595, A117 [Google Scholar]
  51. Jørgensen, J. K., Belloche, A., & Garrod, R. T. 2020, ARA&A, 58, 727 [Google Scholar]
  52. Juvela, & Tharakkal 2024, A&A, 685, A164 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  53. Kandasamy, K., Krishnamurthy, A., Schneider, J., & Poczos, B. 2018, in Proceedings of Machine Learning Research, 84, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, eds. A. Storkey & F. Perez-Cruz (PMLR), 133 [Google Scholar]
  54. Lefloch, B., Ceccarelli, C., Codella, C., et al. 2017, MNRAS, 469, L73 [Google Scholar]
  55. Lindner, R. R., Vera-Ciro, C., Murray, C. E., et al. 2015, AJ, 149, 138 [NASA ADS] [CrossRef] [Google Scholar]
  56. Loomis, R. A., Öberg, K. I., Andrews, S. M., et al. 2018, AJ, 155, 182 [Google Scholar]
  57. Loshchilov, I., & Hutter, F. 2016, arXiv e-prints [arXiv:1608.03983] [Google Scholar]
  58. Maddox, W. J., Balandat, M., Wilson, A. G., & Bakshy, E. 2021, Adv. Neural Inform. Process. Syst., 34, 19274 [Google Scholar]
  59. Manigand, S., Jørgensen, J. K., Calcutt, H., et al. 2020, A&A, 635, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  60. Marchal, Miville-Deschênes, Marc-Antoine, Orieux, François, et al. 2019, A&A, 626, A101 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  61. Martín, Martín-Pintado, J., Blanco-Sánchez, C., et al. 2019, A&A, 631, A159 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  62. McGuire, B. A., Burkhardt, A. M., Kalenskii, S., et al. 2018, Science, 359, 202 [Google Scholar]
  63. Meech, A., Aigrain, S., Brogi, M., & Birkby, J. L. 2022, MNRAS, 512, 2604 [NASA ADS] [CrossRef] [Google Scholar]
  64. Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M., & Wyckoff, S. 2005, ApJ, 634, 1126 [Google Scholar]
  65. Möller, Endres, C., & Schilke, P. 2017, A&A, 598, A7 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  66. O’Hagan, A. 1991, J. Statist. Plann. Inference, 29, 245 [Google Scholar]
  67. Osborne, M., Garnett, R., Ghahramani, Z., et al. 2012, in Advances in Neural Information Processing Systems (NeurIPS), 25 [Google Scholar]
  68. Park, J., & Sandberg, I. W. 1991, Neural Computat., 3, 246 [Google Scholar]
  69. Phan, D., Pradhan, N., & Jankowiak, M. 2019, arXiv e-prints [arXiv:1912.11554] [Google Scholar]
  70. Pineda, J. E., Maury, A. J., Fuller, G. A., et al. 2012, A&A, 544, L7 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  71. Pineda, J. E., Arzoumanian, D., Andre, P., et al. 2023, in Astronomical Society of the Pacific Conference Series, 534, Protostars and Planets VII, eds. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 233 [NASA ADS] [Google Scholar]
  72. Ranganath, R., Gerrish, S., & Blei, D. M. 2013, arXiv e-prints [arXiv:1401.0118] [Google Scholar]
  73. Rasmussen, C. E., & Ghahramani, Z. 2002, in Advances in Neural Information Processing Systems (NeurIPS), 15, 505 [Google Scholar]
  74. Rasmussen, C. E., & Williams, C. K. I. 2005, Gaussian Processes for Machine Learning (The MIT Press) [Google Scholar]
  75. Riener, Kainulainen, J., Henshaw, J. D., et al. 2019, A&A, 628, A78 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  76. Rivilla, V. M., Colzi, L., Jiménez-Serra, I., et al. 2022, ApJ, 929, L11 [NASA ADS] [CrossRef] [Google Scholar]
  77. Rodgers, S. D., & Millar, T. J. 1996, MNRAS, 280, 1046 [NASA ADS] [CrossRef] [Google Scholar]
  78. Salimans, T., Kingma, D. P., & Welling, M. 2014, arXiv e-prints [arXiv:1410.6460] [Google Scholar]
  79. Settles, B. 2009, Active Learning Literature Survey, http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf [Google Scholar]
  80. Sokolov, V., Pineda, J. E., Buchner, J., & Caselli, P. 2020, ApJ, 892, L32 [NASA ADS] [CrossRef] [Google Scholar]
  81. Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. 2009, arXiv e-prints [arXiv:0912.3995] [Google Scholar]
  82. Stein, M. L. 1999, Interpolation of Spatial Data (Springer Science & Business Media) [Google Scholar]
  83. van Dishoeck, E. F., & Blake, G. A. 1998, ARA&A, 36, 317 [Google Scholar]
  84. Vasyunin, A. I., & Herbst, E. 2013, ApJ, 769, 34 [Google Scholar]
  85. Wingate, D., & Weber, T. 2013, arXiv e-prints [arXiv:1301.1299] [Google Scholar]
  86. Xu, W., Adachi, M., Jones, C. N., & Osborne, M. A. 2024, arXiv e-print [arXiv:2410.10452] [Google Scholar]
  87. Zhang, C., Butepage, J., Kjellstrom, H., & Mandt, S. 2017, arXiv e-prints, [arXiv:1711.05597] [Google Scholar]
  88. Zhu, C., Byrd, R., Lu, P., & Nocedal, J. 1997, ACM Trans. Math. Softw., 23, 550 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.