Open Access
Issue
A&A
Volume 701, September 2025
Article Number A109
Number of page(s) 8
Section Catalogs and data
DOI https://doi.org/10.1051/0004-6361/202555059
Published online 05 September 2025
  1. Ahumada, T., Singer, L. P., Anand, S., et al. 2021, Nat. Astron., 5, 917 [NASA ADS] [CrossRef] [Google Scholar]
  2. Amati, L. 2006, MNRAS, 372, 233 [Google Scholar]
  3. Atteia, J.-L., Bouchet, L., Dezalay, J.-P., et al. 2025, ApJ, 980, 241 [Google Scholar]
  4. Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. 2004, Statistics of Extremes: Theory and Applications (Wiley), 522 [Google Scholar]
  5. Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. 2017, SIAM Rev., 59, 65 [Google Scholar]
  6. Bhat, P. N., Meegan, C. A., von Kienlin, A., et al. 2016, VizieR On-line Data Catalog: J/ApJS/223/28 [Google Scholar]
  7. Bloom, J. S. 2022, RNAAS, 6, 220 [Google Scholar]
  8. Briel, M. M., Fragos, T., Salafia, O. S., et al. 2025, arXiv e-prints, [arXiv:2502.09187] [Google Scholar]
  9. Briggs, M. S., Paciesas, W. S., Pendleton, G. N., et al. 1996, ApJ, 459, 40 [NASA ADS] [CrossRef] [Google Scholar]
  10. Brooks, S., Gelman, A., Jones, G., & Meng, X.-L. 2011, Handbook of Markov chain Monte Carlo (CRC Press) [Google Scholar]
  11. Burns, E., Svinkin, D., Fenimore, E., et al. 2023, ApJ, 946, L31 [NASA ADS] [CrossRef] [Google Scholar]
  12. Coles, S. 2001, An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics (London: Springer-Verlag) [Google Scholar]
  13. Dainotti, M. G., Lenart, A. L., Chraya, A., et al. 2023, MNRAS, 518, 2201 [Google Scholar]
  14. Danisch, S., & Krumbiegel, J. 2021, J. Open Source Softw., 6, 3349 [NASA ADS] [CrossRef] [Google Scholar]
  15. Datseris, G., Isensee, J., Pech, S., & Gál, T. 2020, J. Open Source Softw., 5, 2673 [NASA ADS] [CrossRef] [Google Scholar]
  16. Dichiara, S., Tsang, D., Troja, E., et al. 2023, ApJ, 954, L29 [NASA ADS] [CrossRef] [Google Scholar]
  17. Fenimore, E. E., Epstein, R. I., Ho, C., et al. 1993, Nature, 366, 40 [Google Scholar]
  18. Finke, J. D., & Razzaque, S. 2024, ApJ, 975, 70 [Google Scholar]
  19. Fischer, H. 2011, A History of the Central Limit Theorem: From Classical to Modern Probability Theory (New York, NY: Springer New York) [Google Scholar]
  20. Frederiks, D., Svinkin, D., Lysenko, A. L., et al. 2023, ApJ, 949, L7 [NASA ADS] [CrossRef] [Google Scholar]
  21. Galanti, G., Nava, L., Roncadelli, M., Tavecchio, F., & Bonnoli, G. 2024, arXiv e-prints [arXiv:2412.21175] [Google Scholar]
  22. Galanti, G., Roncadelli, M., Bonnoli, G., Nava, L., & Tavecchio, F. 2025, arXiv e-prints [arXiv:2502.03453] [Google Scholar]
  23. Ghirlanda, G., Nava, L., Ghisellini, G., et al. 2012, MNRAS, 420, 483 [NASA ADS] [CrossRef] [Google Scholar]
  24. Goldstein, A., Preece, R. D., Mallozzi, R. S., et al. 2013, ApJS, 208, 21 [Google Scholar]
  25. Gondhalekar, Y., Feigelson, E. D., Caceres, G. A., Montalto, M., & Saha, S. 2023, ApJ, 959, L16 [Google Scholar]
  26. Gruber, D., Goldstein, A., Weller von Ahlefeld, V., et al. 2014, ApJS, 211, 12 [Google Scholar]
  27. Heather, C., Chantavat, T., Chongchitnan, S., & Silk, J. 2024, MNRAS, 534, 173 [Google Scholar]
  28. Hoffman, M. D., & Gelman, A. 2014, J. Mach. Learn. Res., 15, 1593 [Google Scholar]
  29. Jalbert, J., Farmer, M., Gobeil, G., & Roy, P. 2024, J. Statist. Softw., 109, 1 [Google Scholar]
  30. Kaneko, Y., Preece, R. D., Briggs, M. S., et al. 2006, ApJS, 166, 298 [CrossRef] [Google Scholar]
  31. Klebesadel, R. W., Strong, I. B., & Olson, R. A. 1973, ApJ, 182, L85 [NASA ADS] [CrossRef] [Google Scholar]
  32. Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, ApJ, 413, L101 [NASA ADS] [CrossRef] [Google Scholar]
  33. Lan, L., Gao, H., Li, A., et al. 2023, ApJ, 949, L4 [Google Scholar]
  34. Lesage, S., Veres, P., Briggs, M. S., et al. 2023, ApJ, 952, L42 [NASA ADS] [CrossRef] [Google Scholar]
  35. Levan, A. J., Tanvir, N. R., Starling, R. L. C., et al. 2014, ApJ, 781, 13 [Google Scholar]
  36. Levan, A. J., Gompertz, B. P., Salafia, O. S., et al. 2024, Nature, 626, 737 [NASA ADS] [CrossRef] [Google Scholar]
  37. Malesani, D. B., Levan, A. J., Izzo, L., et al. 2023, arXiv e-prints, [arXiv:2302.07891] [Google Scholar]
  38. Navia, C., Oliveira, M., Felicio, B., & Nepomuceno, A. 2024, arXiv e-prints, [arXiv:2410.18131] [Google Scholar]
  39. Northrop, P. J., & Attalides, N. 2016, Statistica Sinica, 26, 721 [Google Scholar]
  40. O’Connor, B., Troja, E., Ryan, G., et al. 2023, Sci. Adv., 9, eadi1405 [Google Scholar]
  41. Poolakkil, S., Preece, R., Fletcher, C., et al. 2021, ApJ, 913, 60 [NASA ADS] [CrossRef] [Google Scholar]
  42. Qin, Y., Liang, E.-W., Liang, Y.-F., et al. 2013, ApJ, 763, 15 [NASA ADS] [CrossRef] [Google Scholar]
  43. Repp, A., & Szapudi, I. 2018, MNRAS, 473, 3598 [NASA ADS] [CrossRef] [Google Scholar]
  44. Salvaterra, R., Campana, S., Vergani, S. D., et al. 2012, ApJ, 749, 68 [NASA ADS] [CrossRef] [Google Scholar]
  45. Süveges, M. 2014, MNRAS, 440, 2099 [CrossRef] [Google Scholar]
  46. Thompson, W. 2023, PairPlots.jl Beautiful and flexible visualizations of high dimensional data, https://sefffal.github.io/PairPlots.jl/dev [Google Scholar]
  47. Tsvetkova, A., Frederiks, D., Golenetskii, S., et al. 2017, ApJ, 850, 161 [NASA ADS] [CrossRef] [Google Scholar]
  48. von Kienlin, A., Meegan, C. A., Paciesas, W. S., et al. 2014, ApJS, 211, 13 [Google Scholar]
  49. von Kienlin, A., Meegan, C. A., Paciesas, W. S., et al. 2020, ApJ, 893, 46 [Google Scholar]
  50. Waizmann, J. C., Ettori, S., & Moscardini, L. 2012, MNRAS, 422, 3554 [Google Scholar]
  51. Williams, M. A., Kennea, J. A., Dichiara, S., et al. 2023, ApJ, 946, L24 [NASA ADS] [CrossRef] [Google Scholar]
  52. Yang, J., Ai, S., Zhang, B.-B., et al. 2022, Nature, 612, 232 [NASA ADS] [CrossRef] [Google Scholar]
  53. Yang, Y.-H., Troja, E., O’Connor, B., et al. 2024, Nature, 626, 742 [NASA ADS] [CrossRef] [Google Scholar]
  54. Yi, S. X., Wang, C. W., Shao, X., et al. 2025, ApJ, 985, 239 [Google Scholar]
  55. Yonetoku, D., Murakami, T., Nakamura, T., et al. 2004, ApJ, 609, 935 [Google Scholar]
  56. Zhang, B. 2018, The Physics of Gamma-Ray Bursts (Cambridge University Press) [Google Scholar]
  57. Zhang, B. B., Liu, Z. K., Peng, Z. K., et al. 2021, Nat. Astron., 5, 911 [CrossRef] [Google Scholar]
  58. Zhang, R., Chen, Y.-Q., Zeng, S.-G., et al. 2024, J. Astrophys. Astron., 45, 14 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.