Open Access
Issue
A&A
Volume 702, October 2025
Article Number A244
Number of page(s) 13
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/202554827
Published online 30 October 2025
  1. Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, Class. Quant. Grav., 32, 074001 [Google Scholar]
  2. Abac, A., Abramo, R., Albanesi, S., et al. 2025, JCAP, submitted [arXiv:2503.12263] [Google Scholar]
  3. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, Phys. Rev. Lett., 116, 061102 [Google Scholar]
  4. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b, Living Rev. Rel., 19, 1 [Google Scholar]
  5. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, ApJ, 848, L13 [CrossRef] [Google Scholar]
  6. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, Phys. Rev. Lett., 119, 161101 [Google Scholar]
  7. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017c, Nature, 551, 85 [Google Scholar]
  8. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019, Phys. Rev. X, 9, 031040 [Google Scholar]
  9. Abbott, R., Abbott, T. D., Abraham, S., et al. 2021a, Phys. Rev. X, 11, 021053 [Google Scholar]
  10. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2021b, ApJ, 909, 218 [NASA ADS] [CrossRef] [Google Scholar]
  11. Abbott, R., Abbott, T. D., Abraham, S., et al. 2021c, ApJ, 913, L7 [NASA ADS] [CrossRef] [Google Scholar]
  12. Abbott, R., Abbott, T. D., Acernese, F., et al. 2023a, Phys. Rev. X, 13, 011048 [NASA ADS] [Google Scholar]
  13. Abbott, R., Abbott, T. D., Acernese, F., et al. 2023b, Phys. Rev. X, 13, 041039 [Google Scholar]
  14. Abbott, R., Abe, H., Acernese, F., et al. 2023c, ApJ, 949, 76 [NASA ADS] [CrossRef] [Google Scholar]
  15. Acernese, F., Agathos, M., Agatsuma, K., et al. 2015, Class. Quant. Grav., 32, 024001 [Google Scholar]
  16. Afroz, S., & Mukherjee, S. 2024a, MNRAS, 530, 3812 [Google Scholar]
  17. Afroz, S., & Mukherjee, S. 2024b, MNRAS, 534, 1283 [Google Scholar]
  18. Alfradique, V., Bom, C. R., Palmese, A., et al. 2024, MNRAS, 528, 3249 [Google Scholar]
  19. Alfradique, V., Bom, C. R., & Castro, T. 2025, Phys. Rev. D, 112, 063561 [Google Scholar]
  20. Amendola, L., Sawicki, I., Kunz, M., & Saltas, I. D. 2018, JCAP, 08, 030 [Google Scholar]
  21. Arai, S., & Nishizawa, A. 2018, Phys. Rev. D, 97, 104038 [Google Scholar]
  22. Aso, Y., Michimura, Y., Somiya, K., et al. 2013, Phys. Rev. D, 88, 043007 [NASA ADS] [CrossRef] [Google Scholar]
  23. Ballard, W., Palmese, A., Hernandez, I. M., et al. 2023, Res. Notes AAS, 7, 250 [Google Scholar]
  24. Belgacem, E., Dirian, Y., Foffa, S., & Maggiore, M. 2018a, Phys. Rev. D, 97, 104066 [Google Scholar]
  25. Belgacem, E., Dirian, Y., Foffa, S., & Maggiore, M. 2018b, Phys. Rev. D, 98, 023510 [Google Scholar]
  26. Belgacem, E., Calcagni, G., Crisostomi, M., et al. 2019a, JCAP, 07, 024 [Google Scholar]
  27. Belgacem, E., Dirian, Y., Finke, A., Foffa, S., & Maggiore, M. 2019b, JCAP, 11, 022 [Google Scholar]
  28. Belgacem, E., Dirian, Y., Finke, A., Foffa, S., & Maggiore, M. 2020, JCAP, 04, 010 [Google Scholar]
  29. Bom, C. R., Alfradique, V., Palmese, A., et al. 2024, MNRAS, 535, 961 [Google Scholar]
  30. Borghi, N., Mancarella, M., Moresco, M., et al. 2024, ApJ, 964, 191 [Google Scholar]
  31. Bradbury, J., Frostig, R., Hawkins, P., et al. 2018, http://github.com/jax-ml/jax [Google Scholar]
  32. Branchesi, M., Maggiore, M., Alonso, D., et al. 2023, JCAP, 07, 068 [CrossRef] [Google Scholar]
  33. Buchs, R., Davis, C., Gruen, D., et al. 2019, MNRAS, 489, 820 [Google Scholar]
  34. Carretero, J., Castander, F. J., Gaztanaga, E., Crocce, M., & Fosalba, P. 2015, MNRAS, 447, 650 [Google Scholar]
  35. Chen, H.-Y., Fishbach, M., & Holz, D. E. 2018, Nature, 562, 545 [Google Scholar]
  36. Chen, H.-Y., Ezquiaga, J. M., & Gupta, I. 2024a, Class. Quant. Grav., 41, 125004 [Google Scholar]
  37. Chen, A., Gray, R., & Baker, T. 2024b, JCAP, 02, 035 [Google Scholar]
  38. Chen, R., Wang, Y.-Y., Zu, L., & Fan, Y.-Z. 2024c, Phys. Rev. D, 109, 024041 [Google Scholar]
  39. Chernoff, D. F., & Finn, L. S. 1993, ApJ, 411, L5 [Google Scholar]
  40. Colangeli, E., Leyde, K., & Baker, T. 2025, JCAP, 05, 078 [Google Scholar]
  41. Colpi, M., Danzmann, K., Hewitson, M., et al. 2024, ArXiv e-prints [arXiv:2402.07571] [Google Scholar]
  42. Dalang, C., & Baker, T. 2024, JCAP, 02, 024 [Google Scholar]
  43. Dalang, C., Fiorini, B., & Baker, T. 2024, ArXiv e-prints [arXiv:2410.03275] [Google Scholar]
  44. Dálya, G., Díaz, R., Bouchet, F. R., et al. 2022, MNRAS, 514, 1403 [CrossRef] [Google Scholar]
  45. Del Pozzo, W. 2012, Phys. Rev. D, 86, 043011 [NASA ADS] [CrossRef] [Google Scholar]
  46. Desprez, G., Paltani, S., Coupon, J., et al. 2020, A&A, 644, A31 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  47. DESI Collaboration (Aghamousa, A., et al.) 2016, ArXiv e-prints [arXiv:1611.00036] [Google Scholar]
  48. Edelman, B., Farr, B., & Doctor, Z. 2023, ApJ, 946, 16 [NASA ADS] [CrossRef] [Google Scholar]
  49. Essick, R., & Farr, W. 2022, ArXiv e-prints [arXiv:2204.00461] [Google Scholar]
  50. Farr, W. M. 2019, Res. Notes AAS, 3, 66 [NASA ADS] [CrossRef] [Google Scholar]
  51. Farr, W. M., Fishbach, M., Ye, J., & Holz, D. 2019, ApJ, 883, L42 [NASA ADS] [CrossRef] [Google Scholar]
  52. Finke, A., Foffa, S., Iacovelli, F., Maggiore, M., & Mancarella, M. 2021, JCAP, 08, 026 [Google Scholar]
  53. Fishbach, M., & Holz, D. E. 2017, ApJ, 851, L25 [NASA ADS] [CrossRef] [Google Scholar]
  54. Fishbach, M., Gray, R., Hernandez, I. M., et al. 2019, ApJ, 871, L13 [NASA ADS] [CrossRef] [Google Scholar]
  55. Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, Publ. Astron. Soc. Pac., 125, 306 [CrossRef] [Google Scholar]
  56. Fosalba, P., Crocce, M., Gaztañaga, E., & Castander, F. J. 2015a, MNRAS, 448, 2987 [NASA ADS] [CrossRef] [Google Scholar]
  57. Fosalba, P., Gaztañaga, E., Castander, F. J., & Crocce, M. 2015b, MNRAS, 447, 1319 [NASA ADS] [CrossRef] [Google Scholar]
  58. Gair, J. R., Ghosh, A., Gray, R., et al. 2023, Astron. J., 166, 22 [Google Scholar]
  59. Gray, R., Hernandez, I. M., Qi, H., et al. 2020, Phys. Rev. D, 101, 122001 [NASA ADS] [CrossRef] [Google Scholar]
  60. Gray, R., Messenger, C., & Veitch, J. 2022, MNRAS, 512, 1127 [NASA ADS] [CrossRef] [Google Scholar]
  61. Gray, R., Beirnaert, F., Karathanasis, C., et al. 2023, JCAP, 12, 023 [Google Scholar]
  62. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
  63. Hinton, S. 2016, J. Open Source Softw., 1, 45 [NASA ADS] [CrossRef] [Google Scholar]
  64. Hoffmann, K., Bel, J., Gaztañaga, E., et al. 2015, MNRAS, 447, 1724 [NASA ADS] [CrossRef] [Google Scholar]
  65. Holz, D. E., & Hughes, S. A. 2005, ApJ, 629, 15 [Google Scholar]
  66. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  67. Iacovelli, F., Mancarella, M., Foffa, S., & Maggiore, M. 2022a, ApJ, 941, 208 [NASA ADS] [CrossRef] [Google Scholar]
  68. Iacovelli, F., Mancarella, M., Foffa, S., & Maggiore, M. 2022b, Astrophys. J. Supp., 263, 2 [Google Scholar]
  69. Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [Google Scholar]
  70. Karathanasis, C., Mukherjee, S., & Mastrogiovanni, S. 2023, MNRAS, 523, 4539 [NASA ADS] [Google Scholar]
  71. Kidger, P., & Garcia, C. 2021, Differentiable Programming Workshop at Neural Information Processing Systems 2021 [Google Scholar]
  72. Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. 2019, J. Open Source Softw., 4, 1143 [Google Scholar]
  73. Laghi, D., Tamanini, N., Del Pozzo, W., et al. 2021, MNRAS, 508, 4512 [NASA ADS] [CrossRef] [Google Scholar]
  74. Landry, P. 2021, https://github.com/landryp/sodapop [Google Scholar]
  75. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints [arXiv:1110.3193] [Google Scholar]
  76. Leyde, K., Mastrogiovanni, S., Steer, D. A., Chassande-Mottin, E., & Karathanasis, C. 2022, JCAP, 09, 012 [CrossRef] [Google Scholar]
  77. Leyde, K., Baker, T., & Enzi, W. 2024, JCAP, 12, 013 [Google Scholar]
  78. LIGO. 2011, LIGO-India, Proposal of the Consortium for Indian Initiative in Gravitational-wave Observations, https://dcc.ligo.org/ligo-m1100296/public [Google Scholar]
  79. Lombriser, L., & Taylor, A. 2016, JCAP, 03, 031 [Google Scholar]
  80. London, L., Khan, S., Fauchon-Jones, E., et al. 2018, Phys. Rev. Lett., 120, 161102 [NASA ADS] [CrossRef] [Google Scholar]
  81. Loredo, T. J. 2004, AIP Conf. Proc., 735, 195 [CrossRef] [Google Scholar]
  82. Madau, P., & Dickinson, M. 2014, Ann. Rev. Astron. Astrophys., 52, 415 [Google Scholar]
  83. Mainieri, V., Anderson, R. I., Brinchmann, J., et al. 2024, ArXiv e-prints [arXiv:2403.05398] [Google Scholar]
  84. Mancarella, M., & Gerosa, D. 2025, Phys. Rev. D, 111, 103012 [Google Scholar]
  85. Mancarella, M., Genoud-Prachex, E., & Maggiore, M. 2022, Phys. Rev. D, 105, 064030 [NASA ADS] [CrossRef] [Google Scholar]
  86. Mandel, I., Farr, W. M., & Gair, J. R. 2019, MNRAS, 486, 1086 [Google Scholar]
  87. Mastrogiovanni, S., & Steer, D. A. 2022, in Handbook of Gravitational Wave Astronomy, eds. C. Bambi, S. Katsanevas, & K. D. Kokkotas (Singapore: Springer) [Google Scholar]
  88. Mastrogiovanni, S., Leyde, K., Karathanasis, C., et al. 2021, Phys. Rev. D, 104, 062009 [NASA ADS] [CrossRef] [Google Scholar]
  89. Mastrogiovanni, S., Laghi, D., Gray, R., et al. 2023, Phys. Rev. D, 108, 042002 [NASA ADS] [CrossRef] [Google Scholar]
  90. Mastrogiovanni, S., Karathanasis, C., Gair, J., et al. 2024a, Annalen Phys., 536, 2200180 [Google Scholar]
  91. Mastrogiovanni, S., Pierra, G., Perriès, S., et al. 2024b, A&A, 682, A167 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  92. Moresco, M., Amati, L., Amendola, L., et al. 2022, Living Rev. Rel., 25, 6 [Google Scholar]
  93. Mukherjee, S. 2022, MNRAS, 515, 5495 [NASA ADS] [CrossRef] [Google Scholar]
  94. Mukherjee, S., Wandelt, B. D., & Silk, J. 2021, MNRAS, 502, 1136 [NASA ADS] [CrossRef] [Google Scholar]
  95. Muttoni, N., Laghi, D., Tamanini, N., Marsat, S., & Izquierdo-Villalba, D. 2023, Phys. Rev. D, 108, 043543 [Google Scholar]
  96. Myles, J., Alarcon, A., Amon, A., et al. 2021, MNRAS, 505, 4249 [NASA ADS] [CrossRef] [Google Scholar]
  97. Nishizawa, A. 2018, Phys. Rev. D, 97, 104037 [Google Scholar]
  98. Nissanke, S., Holz, D. E., Hughes, S. A., Dalal, N., & Sievers, J. L. 2010, ApJ, 725, 496 [Google Scholar]
  99. Niu, R., Zhang, X., Wang, B., & Zhao, W. 2021, ApJ, 921, 149 [Google Scholar]
  100. Palmese, A., deVicente, J., Pereira, M. E. S., et al. 2020, ApJ, 900, L33 [Google Scholar]
  101. Palmese, A., Kaur, R., Hajela, A., et al. 2024, Phys. Rev. D, 109, 063508 [CrossRef] [Google Scholar]
  102. Reitze, D., Adhikari, R. X., Ballmer, S., et al. 2019, Bull. Am. Astron. Soc., 51, 035 [Google Scholar]
  103. Saltas, I. D., Sawicki, I., Amendola, L., & Kunz, M. 2014, Phys. Rev. Lett., 113, 191101 [Google Scholar]
  104. Schirmer, M., Jahnke, K., Seidel, G., et al. 2022, A&A, 662, A92 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  105. Schutz, B. F. 1986, Nature, 323, 310 [Google Scholar]
  106. Soares-Santos, M., Palmese, A., Hartley, W., et al. 2019, ApJ, 876, L7 [NASA ADS] [CrossRef] [Google Scholar]
  107. Talbot, C., & Golomb, J. 2023, MNRAS, 526, 3495 [NASA ADS] [CrossRef] [Google Scholar]
  108. Talbot, C., Smith, R., Thrane, E., & Poole, G. B. 2019, Phys. Rev. D, 100, 043030 [NASA ADS] [CrossRef] [Google Scholar]
  109. Taylor, S. R., Gair, J. R., & Mandel, I. 2012, Phys. Rev. D, 85, 023535 [Google Scholar]
  110. Thrane, E., & Talbot, C. 2019, Publ. Astron. Soc. Austral., 36, e010, [Erratum: Publ. Astron. Soc. Austral. 37, e036 (2020)] [Google Scholar]
  111. Verde, L., Treu, T., & Riess, A. G. 2019, Nature Astron., 3, 891 [NASA ADS] [CrossRef] [Google Scholar]
  112. Vitale, S., Gerosa, D., Farr, W. M., & Taylor, S. R. 2020, in Handbook of Gravitational Wave Astronomy, eds. C. Bambi, S. Katsanevas, & K. D. Kokkotas (Singapore: Springer) [Google Scholar]
  113. Waskom, M. 2021, J. Open Source Softw., 6, 3021 [CrossRef] [Google Scholar]
  114. Wysocki, D., & O’Shaughnessy, R. 2017, https://bayesian-parametric-population-models.readthedocs.io [Google Scholar]
  115. Zwillinger, D., & Kokoska, S. 1999, CRC Standard Probability and Statistics Tables and Formulae (CRC Press) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.