Open Access
Issue
A&A
Volume 702, October 2025
Article Number A37
Number of page(s) 11
Section The Sun and the Heliosphere
DOI https://doi.org/10.1051/0004-6361/202555760
Published online 01 October 2025
  1. Alvarez Laguna, A., Lani, A., Deconinck, H., Mansour, N. N., & Poedts, S. 2016, J. Comput. Phys., 318, 252 [NASA ADS] [CrossRef] [Google Scholar]
  2. Brchnelova, M., Kuźma, B., Perri, B., Lani, A., & Poedts, S. 2022a, ApJS, 263, 18 [NASA ADS] [CrossRef] [Google Scholar]
  3. Brchnelova, M., Zhang, F., Leitner, P., et al. 2022b, J. Plasma Phys., 88, 905880205 [NASA ADS] [CrossRef] [Google Scholar]
  4. Brchnelova, M., Kuźma, B., Zhang, F., Lani, A., & Poedts, S. 2023a, A&A, 676, A83 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  5. Brchnelova, M., Kuźma, B., Zhang, F., et al. 2023b, Sun Geosph., 15, 59 [NASA ADS] [Google Scholar]
  6. Brueckner, G. E., Howard, R. A., Koomen, M. J., et al. 1995, Sol. Phys., 162, 357 [NASA ADS] [CrossRef] [Google Scholar]
  7. Brun, A. S., & Browning, M. K. 2017, Living Rev. Sol. Phys., 14, 4 [Google Scholar]
  8. Brun, A. S., Browning, M. K., Dikpati, M., Hotta, H., & Strugarek, A. 2015, Space Sci. Rev., 196, 101 [CrossRef] [Google Scholar]
  9. Downs, C., Linker, J. A., Caplan, R. M., et al. 2025, Science, 388, 1306 [Google Scholar]
  10. Einfeldt, B., Munz, C. D., Roe, P. L., & Sjogreen, B. 1991, J. Comput. Phys., 92, 273 [NASA ADS] [CrossRef] [Google Scholar]
  11. Elliott, H. A., Henney, C. J., McComas, D. J., Smith, C. W., & Vasquez, B. J. 2012, J. Geophys. Res.: Space Phys., 117, A09102 [NASA ADS] [Google Scholar]
  12. Feng, X. S. 2020, Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere (Singapore: Springer) [Google Scholar]
  13. Feng, X. S., Yang, L. P., Xiang, C. Q., et al. 2010, ApJ, 723, 300 [NASA ADS] [CrossRef] [Google Scholar]
  14. Feng, X. S., Xiang, C. Q., & Zhong, D. K. 2013, Sci Sin-Terrae, 43, 912 [CrossRef] [Google Scholar]
  15. Feng, X. S., Ma, X. P., & Xiang, C. Q. 2015, J. Geophys. Res.: Space Phys., 120, 10159 [Google Scholar]
  16. Feng, X. S., Li, C. X., Xiang, C. Q., et al. 2017, ApJS, 233, 10 [NASA ADS] [CrossRef] [Google Scholar]
  17. Feng, X. S., Liu, X. J., Xiang, C. Q., Li, H. C., & Wei, F. S. 2019, ApJ, 871, 226 [NASA ADS] [CrossRef] [Google Scholar]
  18. Feng, X. S., Wang, H. P., Xiang, C. Q., et al. 2021, ApJS, 257, 34 [NASA ADS] [CrossRef] [Google Scholar]
  19. Feng, X. S., Lv, J. K., Xiang, C. Q., & Jiang, C. W. 2023, MNRAS, 519, 6297 [Google Scholar]
  20. Finley, A. J., Bru, A. S., Strugarek, A., & Cameron, R. 2024, A&A, 684, A92 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Godunov, S. K. 1959, Mat. Sb. (N.S.), 47, 271 [Google Scholar]
  22. Goodrich, C., Sussman, A., Lyon, J., Shay, M., & Cassak, P. 2004, J. Atmos. Sol.-Terr. Phys., 66, 1469 [Google Scholar]
  23. Hamada, A., Asikainen, T., Virtanen, I., & Mursula, K. 2018, Sol. Phys., 293, 71 [NASA ADS] [CrossRef] [Google Scholar]
  24. Hayakawa, H., Ebihara, Y., Mishev, A., et al. 2025, ApJ, 979, 49 [Google Scholar]
  25. Hayashi, K. 2005, ApJS, 161, 480 [NASA ADS] [CrossRef] [Google Scholar]
  26. Hayashi, K., Abbett, W. P., Cheung, M. C. M., & Fisher, G. H. 2021, ApJS, 254, 1 [NASA ADS] [CrossRef] [Google Scholar]
  27. Hoeksema, J. T., Abbett, W. P., Bercik, D. J., et al. 2020, ApJS, 250, 28 [NASA ADS] [CrossRef] [Google Scholar]
  28. Howard, R. A., Moses, J. D., Vourlidas, A., et al. 2008, Space Sci. Rev., 136, 67 [NASA ADS] [CrossRef] [Google Scholar]
  29. Jarolim, R., Veronig, A. M., Purkhart, S., Zhang, P., & Rempel, M. 2024, ApJ, 976, L12 [Google Scholar]
  30. Jeong, H.-J., Moon, Y.-J., Park, E., & Lee, H. 2020, ApJ, 903, L25 [Google Scholar]
  31. Jeong, H.-J., Moon, Y.-J., Park, E., Lee, H., & Baek, J.-H. 2022, ApJS, 262, 50 [CrossRef] [Google Scholar]
  32. Jiang, C., & Zhang, L. 2025, Sol. Phys., 300, 39 [Google Scholar]
  33. Jiang, C. W., Bian, X. K., Sun, T. T., & Feng, X. S. 2021, Front. Phys., 9, 646750 [Google Scholar]
  34. Kimpe, D., Lani, A., Quintino, T., Poedts, S., & Vandewalle, S. 2005, in Proc. 12th European Parallel Virtual Machine and Message Passing Interface Conference, eds. D. K. B. Di Martino, & J. J. Dongarra (Sorrento: Springer), 520 [Google Scholar]
  35. King, J. H., & Papitashvili, N. E. 2005, J. Geophys. Res.: Space Phys., 110, A02104 [CrossRef] [Google Scholar]
  36. Kuźma, B., Brchnelova, M., Perri, B., et al. 2023, ApJ, 942, 31 [CrossRef] [Google Scholar]
  37. Kwak, Y.-S., Kim, J., Kim, S., et al. 2024, J. Astron. Space Sci., 41, 171 [Google Scholar]
  38. Lani, A., Quintino, T., Kimpe, D., et al. 2005, in Computational Science ICCS 2005, eds. V. S. Sunderan, G. D. van Albada, P. M. A. Sloot, & J. J. Dongarra (Atlanta, GA, USA: Springer, Emory University), LNCS 3514, 1, 281 [Google Scholar]
  39. Lani, A., Villedieu, N., Bensassi, K., et al. 2013, in AIAA 2013-2589, 21th AIAA CFD Conference (San Diego (CA)) [Google Scholar]
  40. Li, C. X., Feng, X. S., Xiang, C. Q., et al. 2018, ApJ, 867, 42 [NASA ADS] [CrossRef] [Google Scholar]
  41. Li, H. C., Feng, X. S., & Wei, F. S. 2021, J. Geophys. Res.: Space Phys., 126, e2020JA028870 [Google Scholar]
  42. Linan, L., Regnault, F., Perri, B., et al. 2023, A&A, 675, A101 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  43. Linker, J., Downs, C., Caplan, R., et al. 2024, in EGU General Assembly Conference Abstracts, 4200 [Google Scholar]
  44. Lionello, R., Linker, J. A., & Mikić, Z. 2008, ApJ, 690, 902 [Google Scholar]
  45. Lionello, R., Downs, C., Mason, E. I., et al. 2023, ApJ, 959, 77 [NASA ADS] [CrossRef] [Google Scholar]
  46. Liu, X. J., Feng, X. S., Zhang, M., & Zhao, J. M. 2023, ApJS, 265, 19 [NASA ADS] [CrossRef] [Google Scholar]
  47. Liu, Y. D., Hu, H. D., Zhao, X. W., Chen, C., & Wang, R. 2024, ApJ, 974, L8 [NASA ADS] [CrossRef] [Google Scholar]
  48. Loeschl, P., Valori, G., Hirzberger, J., et al. 2024, A&A, 681, A59 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  49. Mason, E. I., Lionello, R., Downs, C., et al. 2023, ApJ, 959, L4 [NASA ADS] [CrossRef] [Google Scholar]
  50. McClarren, R. G., & Hauck, C. D. 2010, J. Comput. Phys., 229, 5597 [Google Scholar]
  51. Mikić, Z., Lionello, R., Mok, Y., Linker, J. A., & Winebarger, A. R. 2013, ApJ, 773, 94 [Google Scholar]
  52. Mikić, Z., Downs, C., Linker, J. A., et al. 2018, Nat. Astron., 2, 913 [Google Scholar]
  53. Mok, Y., Mikić, Z., Lionello, R., & Linker, J. A. 2005, ApJ, 621, 1098 [NASA ADS] [CrossRef] [Google Scholar]
  54. Nedal, M., Long, D. M., Cuddy, C., Van Driel-Gesztelyi, L., & Gallagher, P. T. 2025, A&A, 695, L24 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  55. Odstrcil, D., Pizzo, V. J., Linker, J. A., et al. 2004, J. Atmos. Sol.-Terr. Phys., 66, 1311 [Google Scholar]
  56. Perri, B., Brun, A. S., Réville, V., & Strugarek, A. 2018, J. Plasma Phys., 84, 765840501 [CrossRef] [Google Scholar]
  57. Perri, B., Leitner, P., Brchnelova, M., et al. 2022, ApJ, 936, 19 [NASA ADS] [CrossRef] [Google Scholar]
  58. Perri, B., Kuźma, B., Brchnelova, M., et al. 2023, ApJ, 943, 124 [NASA ADS] [CrossRef] [Google Scholar]
  59. Perri, B., Finley, A., Réville, V., et al. 2024, A&A, 687, A10 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  60. Petrie, G. J. D., Canou, A., & Amari, T. 2011, Sol. Phys., 274, 163 [NASA ADS] [CrossRef] [Google Scholar]
  61. Pinto, R. F., & Rouillard, A. P. 2017, ApJ, 838, 89 [NASA ADS] [CrossRef] [Google Scholar]
  62. Poedts, S., Lani, A., Scolini, C., et al. 2020, J. Space Weather Space Clim., 10, 57 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. Pomoell, J., & Poedts, S. 2018, J. Space Weather Space Clim., 8, A35 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  64. Sokolov, I. V., van der Holst, B., Manchester, W. B., et al. 2021, ApJ, 908, 172 [NASA ADS] [CrossRef] [Google Scholar]
  65. Tóth, G., van der Holst, B., Sokolov, I. V., et al. 2012, J. Comput. Phys., 231, 870 [Google Scholar]
  66. Upton, L., & Hathaway, D. H. 2014, ApJ, 780, 5 [Google Scholar]
  67. Wang, Y., Feng, X. S., & Xiang, C. Q. 2019, Comput. Fluids, 179, 67 [CrossRef] [Google Scholar]
  68. Wang, H. P., Xiang, C. Q., Liu, X. J., Lv, J. K., & Shen, F. 2022a, ApJ, 935, 46 [NASA ADS] [CrossRef] [Google Scholar]
  69. Wang, H. P., Zhao, J. M., Lv, J. K., & Liu, X. J. 2022b, Chin. J. Geophys., 65, 2779 [Google Scholar]
  70. Wang, H. P., Guo, J. H., Yang, L. P., et al. 2025a, A&A, 693, A257 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  71. Wang, H. P., Poedts, S., Lani, A., et al. 2025b, A&A, 694, A234 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  72. Wang, H. P., Guo, J. H., Poedts, S., et al. 2025c, ApJS, submitted [arXiv:2506.19711] [Google Scholar]
  73. Wang, H. P., Yang, L. P., Poedts, S., et al. 2025d, ApJS, 278, 59 [Google Scholar]
  74. Yalim, M. S., Pogorelov, N., & Liu, Y. 2017, J. Phys.: Conf. Ser., 837, 012015 [NASA ADS] [CrossRef] [Google Scholar]
  75. Yang, L. P., Feng, X. S., Xiang, C. Q., et al. 2012, J. Geophys. Res.: Space Phys., 117, A08110 [Google Scholar]
  76. Yeates, A., Amari, T., Contopoulos, I., et al. 2018, Space Sci. Rev., 214, 99 [CrossRef] [Google Scholar]
  77. Zhao, J., Couvidat, S., Bogart, R. S., et al. 2012, Sol. Phys., 275, 375 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.