Open Access
Issue
A&A
Volume 704, December 2025
Article Number A112
Number of page(s) 9
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202553882
Published online 09 December 2025
  1. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. 2017, J. Am. Statist. Assoc., 112, 859 [Google Scholar]
  2. Blum, M. G., & François, O. 2010, Statist. Comput., 20, 63 [Google Scholar]
  3. Bracewell, R. N. 1978, Nature, 274, 780 [NASA ADS] [CrossRef] [Google Scholar]
  4. Brehmer, J., & Cranmer, K. 2022, in Artificial Intelligence for High Energy Physics (World Scientific), 579 [Google Scholar]
  5. Cannon, P., Ward, D., & Schmon, S. M. 2022, arXiv e-prints [arXiv:2209.01845] [Google Scholar]
  6. Chua, A. J. K., & Vallisneri, M. 2020, Phys. Rev. Lett., 124, 041102 [NASA ADS] [CrossRef] [Google Scholar]
  7. Clevert, D.-A., Unterthiner, T., & Hochreiter, S. 2015, arXiv e-prints [arXiv:1511.07289] [Google Scholar]
  8. Colavita, M. M., Serabyn, E., Millan-Gabet, R., et al. 2009, PASP, 121, 1120 [NASA ADS] [CrossRef] [Google Scholar]
  9. Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R., & Hooten, M. B. 2018, Ecol. Monogr., 88, 526 [Google Scholar]
  10. Cranmer, K., Brehmer, J., & Louppe, G. 2020, PNAS, 117, 30055 [NASA ADS] [CrossRef] [Google Scholar]
  11. Dax, M., Green, S. R., Gair, J., et al. 2021, Phys. Rev. Lett., 127, 241103 [NASA ADS] [CrossRef] [Google Scholar]
  12. Dax, M., Green, S. R., Gair, J., et al. 2023, Phys. Rev. Lett., 130, 171403 [NASA ADS] [CrossRef] [Google Scholar]
  13. Defrère, D., Hinz, P. M., Mennesson, B., et al. 2016, ApJ, 824, 66 [CrossRef] [Google Scholar]
  14. Defrère, D., Hinz, P. M., Kennedy, G. M., et al. 2021, AJ, 161, 186 [CrossRef] [Google Scholar]
  15. Defrère, D., Laugier, R., Martinod, M.-A., et al. 2024, SPIE Conf. Ser., 13095, 130950F [Google Scholar]
  16. Ertel, S., Defrère, D., Hinz, P., et al. 2018, AJ, 155, 194 [Google Scholar]
  17. Ertel, S., Defrère, D., Hinz, P., et al. 2020, AJ, 159, 177 [Google Scholar]
  18. Ertel, S., Hinz, P. M., Stone, J. M., et al. 2020, in Optical and infrared interferometry and imaging VII, 11446, SPIE, 36 [Google Scholar]
  19. Fluke, C. J., & Jacobs, C. 2020, WIREs Data Mining Knowl. Discov., 10, e1349 [CrossRef] [Google Scholar]
  20. Hanot, C., Mennesson, B., Martin, S., et al. 2011, ApJ, 729, 110 [NASA ADS] [CrossRef] [Google Scholar]
  21. Hastings, W. K. 1970, Biometrika, 57, 97 [Google Scholar]
  22. Hermans, J., Delaunoy, A., Rozet, F., et al. 2021, arXiv e-prints [arXiv:2110.06581] [Google Scholar]
  23. Himes, M. D., Harrington, J., Cobb, A. D., et al. 2022, Planet. Sci. J., 3, 91 [NASA ADS] [CrossRef] [Google Scholar]
  24. Hinz, P. M., Defrère, D., Skemer, A., et al. 2016, SPIE Conf. Ser., 9907, 990704 [Google Scholar]
  25. Huang, C.-W., Krueger, D., Lacoste, A., & Courville, A. 2018, arXiv e-prints [arXiv:1804.00779] [Google Scholar]
  26. Jiang, B. 2018, in International Conference on Artificial Intelligence and Statistics, PMLR, 1711 [Google Scholar]
  27. Kobyzev, I., Prince, S. J., & Brubaker, M. A. 2020, IEEE Trans. Pattern Anal. Mach. Intell., 43, 3964 [Google Scholar]
  28. Lagadec, T., Norris, B., Gross, S., et al. 2021, PASA, 38, e036 [Google Scholar]
  29. Loshchilov, I., & Hutter, F. 2017, arXiv e-prints [arXiv:1711.05101] [Google Scholar]
  30. Lueckmann, J.-M., Goncalves, P. J., Bassetto, G., et al. 2017, Adv. Neural Inform. Process. Syst., 30 [Google Scholar]
  31. Martinod, M.-A., Norris, B., Tuthill, P., et al. 2021, Nat. Commun., 12, 2465 [NASA ADS] [CrossRef] [Google Scholar]
  32. Martinod, M.-A., Defrère, D., Laugier, R., et al. 2025, J. Astron. Telesc. Instrum. Syst., 11, 028003 [Google Scholar]
  33. Mennesson, B., Serabyn, E., Hanot, C., et al. 2011, ApJ, 736, 14 [Google Scholar]
  34. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953, J. Chem. Phys., 21, 1087 [Google Scholar]
  35. Miglino, O., Lund, H. H., & Nolfi, S. 1995, Artif. Life, 2, 417 [Google Scholar]
  36. Nixon, M. C., & Madhusudhan, N. 2020, MNRAS, 496, 269 [NASA ADS] [CrossRef] [Google Scholar]
  37. Norris, B. R. M., Cvetojevic, N., Lagadec, T., et al. 2020, MNRAS, 491, 4180 [NASA ADS] [CrossRef] [Google Scholar]
  38. Norris, B. R. M., Martinod, M.-A., Tuthill, P., et al. 2022, SPIE Conf. Ser., 12183, 121831J [Google Scholar]
  39. Papamakarios, G., & Murray, I. 2016, Adv. Neural Inform. Process. Syst., 29 [Google Scholar]
  40. Papamakarios, G., Nalisnick, E., Jimenez Rezende, D., Mohamed, S., & Lakshminarayanan, B. 2019, arXiv e-prints [arXiv:1912.02762] [Google Scholar]
  41. Quanz, S. P., Ottiger, M., Fontanet, E., et al. 2022, A&A, 664, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  42. Rousseau, H., Ertel, S., Defrère, D., Faramaz, V., & Wagner, K. 2024, A&A, 687, A147 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  43. Schmitt, M., Bürkner, P.-C., Köthe, U., & Radev, S. T. 2023, in DAGM German Conference on Pattern Recognition (Springer), 541 [Google Scholar]
  44. Schworer, G., & Tuthill, P. G. 2015, A&A, 578, A59 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  45. Serabyn, E., Mennesson, B., Martin, S., Liewer, K., & Kühn, J. 2019, MNRAS, 489, 1291 [Google Scholar]
  46. Sinharay, S., & Stern, H. S. 2003, J. Statist. Plann. Inference, 111, 209 [Google Scholar]
  47. Skilling, J. 2004, in American Institute of Physics Conference Series, 735, Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, eds. R. Fischer, R. Preuss, & U. V. Toussaint, 395 [Google Scholar]
  48. Skilling, J. 2006, Bayesian Analysis, 1, 833 [CrossRef] [Google Scholar]
  49. Tejero-Cantero, A., Boelts, J., Deistler, M., et al. 2020, J. Open Source Softw., 5, 2505 [NASA ADS] [CrossRef] [Google Scholar]
  50. Turrini, D., Nelson, R. P., & Barbieri, M. 2015, Exp. Astron., 40, 501 [NASA ADS] [CrossRef] [Google Scholar]
  51. Vasist, M., Rozet, F., Absil, O., et al. 2023, A&A, 672, A147 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  52. Ward, D., Cannon, P., Beaumont, M., Fasiolo, M., & Schmon, S. 2022, Adv. Neural Inform. Process. Syst., 35, 33845 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.