Open Access
Issue
A&A
Volume 704, December 2025
Article Number A150
Number of page(s) 18
Section Planets, planetary systems, and small bodies
DOI https://doi.org/10.1051/0004-6361/202555598
Published online 15 December 2025
  1. Abdar, M., Pourpanah, F., Hussain, S., et al. 2021, Information Fusion, 76, 243 [CrossRef] [Google Scholar]
  2. Alonso-Floriano, F. J., Morales, J. C., Caballero, J. A., et al. 2015, A&A, 577, A128 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  3. Ansdell, M., Ioannou, Y., Osborn, H. P., et al. 2018, ApJ, 869, L7 [NASA ADS] [CrossRef] [Google Scholar]
  4. Astropy Collaboration (Price-Whelan, A. M., et al.,) 2022, ApJ, 935, 167 [NASA ADS] [CrossRef] [Google Scholar]
  5. Belokurov, V., Penoyre, Z., Oh, S., et al. 2020, MNRAS, 496, 1922 [Google Scholar]
  6. Benedict, G. F., McArthur, B. E., Forveille, T., et al. 2002, ApJ, 581, L115 [NASA ADS] [CrossRef] [Google Scholar]
  7. Benedict, G. F., McArthur, B. E., Gatewood, G., et al. 2006, AJ, 132, 2206 [Google Scholar]
  8. Binnendijk, L., 1960, Properties of Double Stars: A Survey of Parallaxes and Orbits (Philadelphia: University of Pennsylvania Press) [Google Scholar]
  9. Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D., 2015, in International conference on machine learning, PMLR, 1613 [Google Scholar]
  10. Breiman, L., 2001, Mach. Learn., 45, 5 [Google Scholar]
  11. Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127 [NASA ADS] [CrossRef] [Google Scholar]
  12. Casertano, S., Lattanzi, M. G., Sozzetti, A., et al. 2008, A&A, 482, 699 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Chabrier, G., Johansen, A., Janson, M., & Rafikov, R., 2014, in Protostars and Planets VI, eds. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning (Tucson: University of Arizona Press), 619 [Google Scholar]
  14. Cifuentes, C., Caballero, J. A., González-Payo, J., et al. 2025, A&A, 693, A228 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Cosentino, R., Lovis, C., Pepe, F., et al. 2012, SPIE Conf. Ser., 8446, 84461V [Google Scholar]
  16. Cox, D. R., 1958, J. R. Stat. Soc., 20, 215 [Google Scholar]
  17. Creevey, O. L., Sordo, R., Pailler, F., et al. 2023, A&A, 674, A26 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. Curiel, S., Cantó, J., Georgiev, L., Chávez, C. E., & Poveda, A., 2011, A&A, 525, A78 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Curiel, S., Ortiz-León, G. N., Mioduszewski, A. J., & Sanchez-Bermudez, J., 2022, AJ, 164, 93 [Google Scholar]
  20. Dattilo, A., Vanderburg, A., & Shallue, C., 2019, AAS Meeting Abstracts, 233, 140.16 [Google Scholar]
  21. de Bruijne, J. H. J., Rygl, K. L. J., & Antoja, T., 2014, EAS Pub. Ser., 67–68, 23 [Google Scholar]
  22. Duchêne, G., & Kraus, A., 2013, ARA&A, 51, 269 [Google Scholar]
  23. Dvash, E., Peleg, Y., Zucker, S., & Giryes, R., 2022, AJ, 163, 237 [Google Scholar]
  24. Eker, Z., Soydugan, F., Soydugan, E., et al. 2015, AJ, 149, 131 [Google Scholar]
  25. Eker, Z., Soydugan, F., Bilir, S., et al. 2020, MNRAS, 496, 3887 [NASA ADS] [CrossRef] [Google Scholar]
  26. Fabricius, C., Luri, X., Arenou, F., et al. 2021, A&A, 649, A5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  27. Fischer, D. A., Howard, A. W., Laughlin, G. P., et al. 2014, Exoplanet Detection Techniques (Tucson: University of Arizona Press) [Google Scholar]
  28. Fitton, S., Tofflemire, B. M., & Kraus, A. L., 2022, Res. Notes Am. Astron. Soc., 6, 18 [Google Scholar]
  29. Fouesneau, M., Frémat, Y., Andrae, R., et al. 2023, A&A, 674, A28 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Gaia Collaboration (Prusti, T., et al.,) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Gaia Collaboration (Smart, R. L., et al.,) 2021, A&A, 649, A6 [EDP Sciences] [Google Scholar]
  32. Gaia Collaboration (Arenou, F., et al.,) 2023a, A&A, 674, A34 [CrossRef] [EDP Sciences] [Google Scholar]
  33. Gaia Collaboration (Creevey, O. L., et al.,) 2023b, A&A, 674, A39 [CrossRef] [EDP Sciences] [Google Scholar]
  34. Gaia Collaboration (Vallenari, A., et al.,) 2023c, A&A, 674, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Gaia Collaboration (Panuzzo, P., et al.,) 2024, A&A, 686, L2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Gandhi, P., Buckley, D. A. H., Charles, P. A., et al. 2022, MNRAS, 510, 3885 [CrossRef] [Google Scholar]
  37. Géron, A., 2017, Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (Sebastopol, CA: O’Reilly Media) [Google Scholar]
  38. Goodfellow, I., Bengio, Y., & Courville, A., 2016, Deep Learning (Cambridge, MA: MIT Press) [Google Scholar]
  39. Gosset, E., Damerdji, Y., Morel, T., et al. 2025, A&A, 693, A124 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Guiglion, G., Nepal, S., Chiappini, C., et al. 2024, A&A, 682, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  41. Halbwachs, J.-L., Pourbaix, D., Arenou, F., et al. 2023, A&A, 674, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  42. Hambly, N., Andrae, R., De Angeli, F., et al. 2022, Gaia DR3 Documentation, Chapter 20: Data Model Description, Gaia Data Processing and Analysis Consortium (DPAC), European Space Agency [Google Scholar]
  43. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
  44. Hastie, T., Tibshirani, R., & Friedman, J., 2001, The Elements of Statistical Learning, Springer Series in Statistics (New York, NY, USA: Springer New York Inc.) [Google Scholar]
  45. Henry, T. J., & Jao, W.-C., 2024, ARA&A, 62, 593 [Google Scholar]
  46. Holl, B., Sozzetti, A., Sahlmann, J., et al. 2023, A&A, 674, A10 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  47. Hornik, K., Stinchcombe, M., & White, H., 1989, Neural Netw., 2, 359 [NASA ADS] [CrossRef] [Google Scholar]
  48. Hunter, J. D., 2007, CSE, 9, 90 [Google Scholar]
  49. Keenan, P. C., & McNeil, R. C., 1989, ApJS, 71, 245 [Google Scholar]
  50. Kingma, D. P., & Ba, J., 2015, in ICLR (Poster), eds. Y. Bengio, & Y. LeCun [Google Scholar]
  51. Kroupa, P., 2001, MNRAS, 322, 231 [NASA ADS] [CrossRef] [Google Scholar]
  52. Lakshminarayanan, B., Pritzel, A., & Blundell, C., 2017, Advances in Neural Information Processing Systems, 30 [Google Scholar]
  53. Lépine, S., Hilton, E. J., Mann, A. W., et al. 2013, AJ, 145, 102 [Google Scholar]
  54. Lindegren, L., Lammers, U., Hobbs, D., et al. 2012, A&A, 538, A78 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  55. Lindegren, L., Hernández, J., Bombrun, A., et al. 2018, A&A, 616, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  56. Lindegren, L., Klioner, S. A., Hernández, J., et al. 2021, A&A, 649, A2 [EDP Sciences] [Google Scholar]
  57. Loaiza-Ganem, G., & Cunningham, J. P., 2019, Advances in Neural Information Processing Systems, 32 [Google Scholar]
  58. Luna, A., Marchetti, T., Rejkuba, M., & Minniti, D., 2023, A&A, 677, A185 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  59. Lundberg, S. M., & Lee, S.-I., 2017, Advances in Neural Information Processing Systems, 30 [Google Scholar]
  60. Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E., 2001, AJ, 122, 3466 [Google Scholar]
  61. Morton, T. D., 2015, Astrophysics Source Code Library [record ascl:1503.010] [Google Scholar]
  62. Neal, R. M., 2012, Bayesian Learning for Neural Networks (Springer Science & Business Media), 118 [Google Scholar]
  63. Newton, E. R., Charbonneau, D., Irwin, J., et al. 2014, AJ, 147, 20 [Google Scholar]
  64. Panahi, A., Zucker, S., Clementini, G., et al. 2022, A&A, 663, A101 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  65. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, JMLR, 12, 2825 [Google Scholar]
  66. Penoyre, Z., Belokurov, V., Evans, N. W., Everall, A., & Koposov, S. E., 2020, MNRAS, 495, 321 [Google Scholar]
  67. Penoyre, Z., Belokurov, V., & Evans, N. W., 2022, MNRAS, 513, 5270 [Google Scholar]
  68. Pepe, F., Cristiani, S., Rebolo, R., et al. 2021, A&A, 645, A96 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  69. Perryman, M., Hartman, J., Bakos, G. Á., & Lindegren, L. 2014, ApJ, 797, 14 [Google Scholar]
  70. Pourbaix, D., Tokovinin, A. A., Batten, A. H., et al. 2004, A&A, 424, 727 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  71. Pravdo, S. H., Shaklan, S. B., & Lloyd, J., 2005, ApJ, 630, 528 [Google Scholar]
  72. Quirrenbach, A., 2011, Exoplanets, ed. S Seager (Tucson, AZ: University of Arizona Press), 526, 157 [Google Scholar]
  73. Quirrenbach, A., Passegger, V. M., Trifonov, T., et al. 2022, A&A, 663, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  74. Ranaivomanana, P., Uzundag, M., Johnston, C., et al. 2025, A&A, 693, A268 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  75. Rauer, H., Aerts, C., Deleuil, M., et al. 2022, European Planetary Science Congress, 453 [Google Scholar]
  76. Reid, I. N., Hawley, S. L., & Gizis, J. E., 1995, AJ, 110, 1838 [Google Scholar]
  77. Ribas, I., Reiners, A., Zechmeister, M., et al. 2023, A&A, 670, A139 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  78. Sahlmann, J., & Gómez, P., 2025, MNRAS, 537, 1130 [Google Scholar]
  79. Sahlmann, J., Lazorenko, P. F., Ségransan, D., et al. 2013, A&A, 556, A133 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  80. Sahlmann, J., Triaud, A. H. M. J., & Martin, D. V., 2015, MNRAS, 447, 287 [NASA ADS] [CrossRef] [Google Scholar]
  81. Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R., & Zolotukhin, I., 2011, A&A, 532, A79 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  82. Schweitzer, A., Passegger, V. M., Cifuentes, C., et al. 2019, A&A, 625, A68 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  83. Scott, D. W., 2015, Multivariate Density Estimation: Theory, Practice, and Visualization (Hoboken: Wiley) [Google Scholar]
  84. Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B., 2007, ApJ, 669, 1279 [NASA ADS] [CrossRef] [Google Scholar]
  85. Shallue, C. J., & Vanderburg, A., 2018, AJ, 155, 94 [NASA ADS] [CrossRef] [Google Scholar]
  86. Shan, Y., Revilla, D., Skrzypinski, S. L., et al. 2024, A&A, 684, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  87. Shkolnik, E., Liu, M. C., & Reid, I. N., 2009, ApJ, 699, 649 [CrossRef] [Google Scholar]
  88. Silverman, B. W., 1986, Density Estimation for Statistics and Data Analysis, Chapman & Hall/CRC monographs on statistics and applied probability (London: Chapman and Hall) [Google Scholar]
  89. Sozzetti, A., Giacobbe, P., Lattanzi, M. G., et al. 2014, MNRAS, 437, 497 [NASA ADS] [CrossRef] [Google Scholar]
  90. Spiegel, D. S., Burrows, A., & Milsom, J. A., 2011, ApJ, 727, 57 [Google Scholar]
  91. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R., 2014, JMLR, 15, 1929 [Google Scholar]
  92. Stassun, K. G., & Torres, G., 2021, ApJ, 907, L33 [NASA ADS] [CrossRef] [Google Scholar]
  93. Stefánsson, G., Mahadevan, S., Winn, J. N., et al. 2025, AJ, 169, 107 [Google Scholar]
  94. Stevenson, A. T., Haswell, C. A., Barnes, J. R., & Barstow, J. K., 2023, MNRAS, 526, 5155 [NASA ADS] [CrossRef] [Google Scholar]
  95. Sullivan, K., Kraus, A. L., Berger, T. A., & Huber, D., 2025, AJ, 169, 29 [Google Scholar]
  96. TensorFlow, G., 2015, Google Research, 10, s15326985ep4001 [Google Scholar]
  97. Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, A&A, 460, 695 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  98. Unger, N., Ségransan, D., Barbato, D., et al. 2023, A&A, 680, A16 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  99. Valizadegan, H., Martinho, M. J. S., Wilkens, L. S., et al. 2022, ApJ, 926, 120 [NASA ADS] [CrossRef] [Google Scholar]
  100. van Groeningen, M. G. J., Castro-Ginard, A., Brown, A. G. A., Casamiquela, L., & Jordi, C., 2023, A&A, 675, A68 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  101. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.