Open Access
Issue
A&A
Volume 704, December 2025
Article Number A266
Number of page(s) 14
Section Interstellar and circumstellar matter
DOI https://doi.org/10.1051/0004-6361/202557089
Published online 19 December 2025
  1. Akimkin, V. V. 2015, Astron. Rep., 59, 747 [Google Scholar]
  2. Alamdari, P., Sharif, F., & Mazinani, S. 2023, Polyolefins J., 10, 101 [Google Scholar]
  3. Allain, T., Leach, S., & Sedlmayr, E. 1996, A&A, 305, 602 [NASA ADS] [Google Scholar]
  4. Allain, T., Sedlmayr, E., & Leach, S. 1997, A&A, 323, 163 [Google Scholar]
  5. Berthelot, M. 1867, Ann. Chim. Phys., 12, 52 [Google Scholar]
  6. Bockhorn, H., D'Anna, A., & Sarofim, A. F. 2009, Combustion Generated fine Carbonaceous Particles, ed. H. Wang (Universitätsverlag Karlsruhe) [Google Scholar]
  7. Bovino, S., & Grassi, T. 2024, Astrochemical Modeling: Practical Aspects of Microphysics in Numerical Simulations (Amsterdam, Netherlands: Elsevier) [Google Scholar]
  8. Cadwell, B. J., Wang, H., Feigelson, E. D., & Frenklach, M. 1994, ApJ, 429, 285 [Google Scholar]
  9. Carmer, C. S., Weiner, B., & Frenklach, M. 1993, J. Chem. Phys., 99, 1356 [Google Scholar]
  10. Cherchneff, I. 2012, A&A, 545, A12 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Cherchneff, I., Barker, J. R., & Tielens, A. G. G. M. 1992, ApJ, 401, 269 [Google Scholar]
  12. Cho, J.-H., Kleinman, L., Chan, C. T., & Kim, K. S. 2001, Phys. Rev. B, 63, 073306 [Google Scholar]
  13. Daulton, T. L., Bernatowicz, T. J., Lewis, R. S., et al. 2003, Geochim. Cosmochim. Acta, 67, 4743 [Google Scholar]
  14. Dhanoa, H., & Rawlings, J. M. C. 2014, MNRAS, 440, 1786 [Google Scholar]
  15. Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium [Google Scholar]
  16. Draine, B. T., & Li, A. 2007, ApJ, 657, 810 [CrossRef] [Google Scholar]
  17. Duran, R. P., Amorebieta, V. T., & Colussi, A. J. 1988, J. Phys. Chem., 92, 636 [Google Scholar]
  18. Ferrarotti, A. S., & Gail, H. P. 2006, A&A, 447, 553 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Fonfría, J. P., Cernicharo, J., Richter, M. J., & Lacy, J. H. 2008, ApJ, 673, 445 [CrossRef] [Google Scholar]
  20. Frenklach, M., & Feigelson, E. D. 1989, ApJ, 341, 372 [NASA ADS] [CrossRef] [Google Scholar]
  21. Frenklach, M., & Mebel, A. M. 2020, Phys. Chem. Chem. Phys., 22, 5314 [Google Scholar]
  22. Frenklach, M., & Wang, H. 1991, Twenty-Third Symposium (International) on Combustion, 23, 1559, [Google Scholar]
  23. Frenklach, M., Carmer, C. S., & Feigelson, E. D. 1989, Nature, 339, 196 [Google Scholar]
  24. Frenklach, M., Singh, R. I., & Mebel, A. M. 2019, Proc. Combust. Inst., 37, 969 [Google Scholar]
  25. Gail, H. P., & Sedlmayr, E. 1987, A&A, 171, 197 [NASA ADS] [Google Scholar]
  26. Gail, H. P., & Sedlmayr, E. 1988, A&A, 206, 153 [NASA ADS] [Google Scholar]
  27. Gail, H.-P., & Sedlmayr, E. 2013, Physics and Chemistry of Circumstellar Dust Shells, Cambridge Astrophysics (Cambridge University Press) [Google Scholar]
  28. Gentile, F. S., Picca, F., De Falco, G., et al. 2020, Fuel, 279, 118491 [Google Scholar]
  29. Gómez-Llanos, V., Morisset, C., Szczerba, R., García-Hernández, D. A., & García-Lario, P. 2018, A&A, 617, A85 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Gordeev, E. G., Pentsak, E. O., & Ananikov, V. P. 2020, J. Am. Chem. Soc., 142, 3784 [Google Scholar]
  31. Groenewegen, M. A. T., Oudmaijer, R. D., & Ludwig, H. G. 1997, MNRAS, 292, 686 [NASA ADS] [CrossRef] [Google Scholar]
  32. Harris, S. J., & Kennedy, I. M. 1988, Combust. Sci. Technol., 59, 443 [Google Scholar]
  33. Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, ApJS, 82, 167 [Google Scholar]
  34. He, C., Kaiser, R. I., Lu, W., et al. 2023, Chem. Sci., 14, 5369 [Google Scholar]
  35. Helling, C., Jorgensen, U. G., Plez, B., & Johnson, H. R. 1996, A&A, 315, 194 [Google Scholar]
  36. Höfner, S., & Olofsson, H. 2018, A&A Rev., 26, 1 [Google Scholar]
  37. Homann, K.-H. 1998, Angew. Chem. Int. Ed., 37, 2434 [Google Scholar]
  38. Huang, C., Yang, B., Zhang, F., & Tian, G. 2018, Combust. Flame, 198, 334 [CrossRef] [Google Scholar]
  39. Jacobson, R. S., Korte, A. R., Vertes, A., & Miller, J. H. 2020, Angew. Chem. Int. Ed., 59, 4484 [Google Scholar]
  40. Jasper, A. W. 2020, Int. J. Chem. Kinet., 52, 387 [Google Scholar]
  41. Jones, A. P. 2022, A&A, 665, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  42. Jones, A. P., Fanciullo, L., Köhler, M., et al. 2013, A&A, 558, A62 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  43. Kaiser, R. I., Parker, D. S., & Mebel, A. M. 2015, Annu. Rev. Phys. Chem., 66, 43 [NASA ADS] [CrossRef] [Google Scholar]
  44. Kaiser, R. I., Zhao, L., Lu, W., et al. 2022, Nat. Commun., 13, 786 [Google Scholar]
  45. Kislov, V. V., Islamova, N. I., Kolker, A. M., Lin, S. H., & Mebel, A. M. 2005, J. Chem. Theory Comput., 1, 908 [Google Scholar]
  46. Kozasa, T., Dorschner, J., Henning, T., & Stognienko, R. 1996, A&A, 307, 551 [NASA ADS] [Google Scholar]
  47. Krasnoukhov, V., Pivovarov, P., Zagidullin, M., et al. 2022, Astron. Rep., 66, 811 [NASA ADS] [CrossRef] [Google Scholar]
  48. Krestinin, A. 2000, Combust. Flame, 121, 513 [Google Scholar]
  49. Krueger, D., & Sedlmayr, E. 1997, A&A, 321, 557 [Google Scholar]
  50. Krueger, D., Patzer, A. B. C., & Sedlmayr, E. 1996, A&A, 313, 891 [Google Scholar]
  51. Laor, A., & Draine, B. T. 1993, ApJ, 402, 441 [NASA ADS] [CrossRef] [Google Scholar]
  52. Lefèvre, C., Min, M., Pagani, L., et al. 2019, SIGMA: Simple Icy Grain Model for Aggregates [Google Scholar]
  53. Lorenz-Martins, S., & Lefevre, J. 1994, A&A, 291, 831 [NASA ADS] [Google Scholar]
  54. Marks, N. A., Cover, M. F., & Kocer, C. 2006, Mol. Simul., 32, 1271 [Google Scholar]
  55. Martin, P. G., & Rogers, C. 1987, ApJ, 322, 374 [Google Scholar]
  56. Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425 [Google Scholar]
  57. Matsugi, A., & Miyoshi, A. 2012, Int. J. Chem. Kinet., 44, 206 [Google Scholar]
  58. Mattsson, L., Wahlin, R., & Höfner, S. 2010, A&A, 509, A14 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  59. McElroy, D., Walsh, C., Markwick, A. J., et al. 2013, A&A, 550, A36 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  60. Mebel, A. M., Landera, A., & Kaiser, R. I. 2017, J. Phys. Chem. A, 121, 901 [Google Scholar]
  61. Merino, P., Svec, M., Martinez, J. I., et al. 2014, Nat. Commun., 5 [Google Scholar]
  62. Micelotta, E. R., Jones, A. P., & Tielens, A. G. G. M. 2010, A&A, 510, A36 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. Millar, T. J. 2016, in Journal of Physics Conference Series, 728, Journal of Physics Conference Series (IOP), 052001 [Google Scholar]
  64. Miller, J. A., Kee, R. J., & Westbrook, C. K. 1990, Annu. Rev. Phys. Chem., 41, 345 [Google Scholar]
  65. Millar, T. J., Herbst, E., & Bettens, R. P. A. 2000, MNRAS, 316, 195 [NASA ADS] [CrossRef] [Google Scholar]
  66. Min, M., Hovenier, J. W., & de Koter, A. 2005, A&A, 432, 909 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Min, M., Rab, C., Woitke, P., Dominik, C., & Ménard, F. 2016, A&A, 585, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  68. Murga, M. S. 2024, Astron. Rep., 68, 1176 [Google Scholar]
  69. Murga, M. S., Wiebe, D. S., Sivkova, E. E., & Akimkin, V. V. 2019, MNRAS, 488, 965 [NASA ADS] [CrossRef] [Google Scholar]
  70. Navarro-Ruiz, J., Rimola, A., & Sodupe, M. 2013, J. Phys. Chem. C, 117, 15130 [Google Scholar]
  71. Parker, D. S. N., Zhang, F., Kim, Y. S., et al. 2012, PNAS, 109, 53 [Google Scholar]
  72. Parker, D. S. N., Kaiser, R. I., Bandyopadhyay, B., et al. 2015, Angew. Chem. Int. Ed., 54, 5421 [Google Scholar]
  73. Pascoli, G., & Polleux, A. 2000, A&A, 359, 799 [Google Scholar]
  74. Peeters, E., Hony, S., Van Kerckhoven, C., et al. 2002, A&A, 390, 1089 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  75. Pentsak, E. O., Gordeev, E. G., & Ananikov, V. P. 2020, Dokl. Phys. Chem., 493, 95 [Google Scholar]
  76. Pentsak, E. O., Murga, M. S., & Ananikov, V. P. 2024, ACS Earth Space Chem., 8, 798 [Google Scholar]
  77. Pollmann, J., Peng, X., Wieferink, J., & Krüger, P. 2014, Surf. Sci. Rep., 69, 55 [Google Scholar]
  78. Radovic, L. R., & Bockrath, B. 2005, J. Am. Chem. Soc., 127, 5917 [Google Scholar]
  79. Robertson, J. 2002, Mater. Sci. Eng. R: Rep., 37, 129 [Google Scholar]
  80. Santoro, G., Martínez, L., Lauwaet, K., et al. 2020, ApJ, 895, 97 [CrossRef] [Google Scholar]
  81. Sinha, S., & Raj, A. 2016, Phys. Chem. Chem. Phys., 18, 8120 [Google Scholar]
  82. Sloan, G. C., Lagadec, E., Zijlstra, A. A., et al. 2014, ApJ, 791, 28 [NASA ADS] [CrossRef] [Google Scholar]
  83. Speck, A. K., Corman, A. B., Wakeman, K., Wheeler, C. H., & Thompson, G. 2009, ApJ, 691, 1202 [NASA ADS] [CrossRef] [Google Scholar]
  84. Sugiura, H., Ohashi, Y., Ishikawa, K., et al. 2020, Diamond Related Mater., 104, 107651 [Google Scholar]
  85. Suh, K.-W. 2000, MNRAS, 315, 740 [NASA ADS] [CrossRef] [Google Scholar]
  86. Tielens, A. G. G. M. 2008, A&A, 46, 289 [Google Scholar]
  87. Wang, H. 2011, Proc. Combust. Inst., 33, 41 [Google Scholar]
  88. Wang, H., & Frenklach, M. 1997, Combust. Flame, 110, 173 [Google Scholar]
  89. Webster, I. J., Beckham, J. L., Johnson, N. D., & Duncan, M. A. 2022, J. Phys. Chem. A, 126, 1144 [Google Scholar]
  90. Wieferink, J., Krüger, P., & Pollmann, J. 2006, Phys. Rev. B, 73, 115309 [Google Scholar]
  91. Willacy, K., & Cherchneff, I. 1998, A&A, 330, 676 [NASA ADS] [Google Scholar]
  92. Zelinsky, N. D. 1923, C. R. Acad. Sci., 177, 882 [Google Scholar]
  93. Zhao, T. Q., Li, Q., Liu, B. S., et al. 2016, Phys. Chem. Chem. Phys., 18, 3489 [Google Scholar]
  94. Zhao, L., Prendergast, M. B., Kaiser, R. I., et al. 2019, Angew. Chem. Int. Ed., 58, 17442 [Google Scholar]
  95. Zhao, L., Lu, W., Ahmed, M., et al. 2021, Sci. Adv., 7, eabf0360 [CrossRef] [Google Scholar]
  96. Zhukovska, S., Gail, H. P., & Trieloff, M. 2008, A&A, 479, 453 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  97. Zubko, V. G., Mennella, V., Colangeli, L., & Bussoletti, E. 1996, MNRAS, 282, 1321 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.