Open Access
Issue
A&A
Volume 706, February 2026
Article Number A124
Number of page(s) 12
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202449845
Published online 09 February 2026
  1. Abel, T., Hahn, O., & Kaehler, R., 2012, MNRAS, 427, 61 [Google Scholar]
  2. Agarwal, S., Davé, R., & Bassett, B. A., 2018, MNRAS, 478, 3410 [CrossRef] [Google Scholar]
  3. Alves de Oliveira, R., Li, Y., Villaescusa-Navarro, F., Ho, S., & Spergel, D. N., 2020, arXiv e-prints [arXiv:2012.00240] [Google Scholar]
  4. Antipov, G., Baccouche, M., & Dugelay, J.-L., 2017, arXiv e-prints [arXiv:1702.01983] [Google Scholar]
  5. Aragon-Calvo, M. A., 2019, MNRAS, 484, 5771 [CrossRef] [Google Scholar]
  6. Aragon-Calvo, M. A., 2021, MNRAS, 503, 557 [Google Scholar]
  7. Barnes, J., & Hut, P., 1986, Nature, 324, 446 [NASA ADS] [CrossRef] [Google Scholar]
  8. Bartlett, D. J., Chiarenza, M., Doeser, L., & Leclercq, F., 2025, A&A, 694, A287 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  9. Bengio, Y., Louradour, J., Collobert, R., & Weston, J., 2009, in Proceedings of the 26th annual international conference on machine learning, 41 [Google Scholar]
  10. Biswas, M., & Adlak, R., 2018, in 2018 4th International Conference for Convergence in Technology (I2CT), IEEE, 1 [Google Scholar]
  11. Bonjean, V., 2020, A&A, 634, A81 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Bonjean, V., Aghanim, N., Salomé, P., et al. 2019, A&A, 622, A137 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Boylan-Kolchin, M., Springel, V., White, S. D., Jenkins, A., & Lemson, G., 2009, MNRAS, 398, 1150 [NASA ADS] [CrossRef] [Google Scholar]
  14. Burke, C. J., Aleo, P. D., Chen, Y.-C., et al. 2019, MNRAS, 490, 3952 [NASA ADS] [CrossRef] [Google Scholar]
  15. Chittenden, H. G., & Tojeiro, R., 2023, MNRAS, 518, 5670 [Google Scholar]
  16. Conceição, M., Krone-Martins, A., & Da Silva, A., 2024a, in 2024 IEEE 20th International Conference on e-Science (e-Science), IEEE, 1 [Google Scholar]
  17. Conceição, M., Krone-Martins, A., da Silva, A., & Moliné, Á. 2024b, A&A, 681, A123 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. Crain, R. A., Schaye, J., Bower, R. G., et al. 2015, MNRAS, 450, 1937 [NASA ADS] [CrossRef] [Google Scholar]
  19. Dere, S., Fatima, M., Jagtap, R., Inamdar, U., & Shardoor, N. B., 2021, in 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Vol. 1, IEEE, 702 [Google Scholar]
  20. Doeser, L., Jamieson, D., Stopyra, S., et al. 2024, MNRAS, 535, 1258 [NASA ADS] [CrossRef] [Google Scholar]
  21. D’Isanto, A., & Polsterer, K. L., 2018, A&A, 609, A111 [Google Scholar]
  22. Efstathiou, G., Davis, M., White, S., & Frenk, C., 1985, ApJS, 57, 241 [NASA ADS] [CrossRef] [Google Scholar]
  23. Feng, L., 2023, IEEE J. Multiscale Multiphys. Comput. Tech., 8, 97 [Google Scholar]
  24. Freed, M., & Lee, J., 2013, in 2013 International Conference on Computational and Information Sciences, IEEE, 322 [Google Scholar]
  25. Gardner, J. P., Mather, J. C., Clampin, M., et al. 2006, Space Sci. Rev., 123, 485 [Google Scholar]
  26. Giusarma, E., Reyes, M., Villaescusa-Navarro, F., et al. 2023, ApJ, 950, 70 [NASA ADS] [CrossRef] [Google Scholar]
  27. Gondhalekar, Y., Bose, S., Li, B., & Cuesta-Lazaro, C., 2025, MNRAS, 536, 1408 [Google Scholar]
  28. González, R. E., Munoz, R. P., & Hernández, C. A., 2018, Astron. Comp., 25, 103 [Google Scholar]
  29. Hahn, O., Abel, T., & Kaehler, R., 2013, MNRAS, 434, 1171 [Google Scholar]
  30. Hansen, D. L., Mendoza, I., Liu, R., et al. 2022, Mach. Learn. Astrophys., 27 [Google Scholar]
  31. Hausen, R., & Robertson, B., 2022, arXiv e-prints [arXiv:2201.04714] [Google Scholar]
  32. He, S., Li, Y., Feng, Y., et al. 2019, Proc. Natl. Acad. Sci., 116, 13825 [NASA ADS] [CrossRef] [Google Scholar]
  33. Henghes, B., Pettitt, C., Thiyagalingam, J., Hey, T., & Lahav, O., 2021, MNRAS, 505, 4847 [CrossRef] [Google Scholar]
  34. Henghes, B., Thiyagalingam, J., Pettitt, C., Hey, T., & Lahav, O., 2022, MNRAS, 512, 1696 [NASA ADS] [CrossRef] [Google Scholar]
  35. Hiegel, J., Thélie, E., Aubert, D., et al. 2023, A&A, 679, A125 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Hockney, R. W., & Eastwood, J. W., 2021, Computer Simulation Using Particles (Boca Raton: CRC Press) [Google Scholar]
  37. Hsu, A., Ho, M., Lin, J., et al. 2025, Open J. Astrophys., 8, 92 [Google Scholar]
  38. Humbird, K. D., Peterson, J. L., & McClarren, R. G., 2018, arXiv e-print [arXiv:1811.05852] [Google Scholar]
  39. Jamieson, D., Li, Y., de Oliveira, R. A., et al. 2023, ApJ, 952, 145 [NASA ADS] [CrossRef] [Google Scholar]
  40. Jamieson, D., Li, Y., Villaescusa-Navarro, F., Ho, S., & Spergel, D. N., 2025, J. Cosmology Astropart. Phys., 2025, 072 [Google Scholar]
  41. Jasche, J., & Lavaux, G., 2019, A&A, 625, A64 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  42. Jia, P., Zheng, Y., Wang, M., & Yang, Z., 2023, Astron. Comput., 42, 100687 [Google Scholar]
  43. Jindal, V., Liang, A., Singh, A., Ho, S., & Jamieson, D., 2023, arXiv e-prints [arXiv:2303.13056] [Google Scholar]
  44. Jo, Y., & Kim, J.-H. 2019, MNRAS, 489, 3565 [Google Scholar]
  45. Johnson, J., Alahi, A., & Fei-Fei, L., 2016, in Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands (Berlin: Springer), 694 [Google Scholar]
  46. Kingma, D. P., & Welling, M., 2013, arXiv e-prints [arXiv:1312.6114] [Google Scholar]
  47. Kitaura, F.-S., & Heß, S., 2013, MNRAS, 435, L78 [Google Scholar]
  48. Kodi Ramanah, D., Charnock, T., Villaescusa-Navarro, F., & Wandelt, B. D., 2020, MNRAS, 495, 4227 [NASA ADS] [CrossRef] [Google Scholar]
  49. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv e-prints [arXiv:1110.3193] [Google Scholar]
  50. Legin, R., Ho, M., Lemos, P., et al. 2024, MNRAS, 527, L173 [Google Scholar]
  51. Li, P., Ilayda Onur, I., Dodelson, S., & Chaudhari, S., 2022, arXiv e-prints [arXiv:2205.07368] [Google Scholar]
  52. Liu, Y., 2023, Int. J. Mod. Phys. C, C34, 2350099 [Google Scholar]
  53. Luo, Z., Chen, J., Chen, Z., et al. 2025, ApJS, 279, 17 [Google Scholar]
  54. Mirza, M., & Osindero, S., 2014, arXiv e-prints [arXiv:1411.1784] [Google Scholar]
  55. Monaco, P., Theuns, T., & Taffoni, G., 2002, MNRAS, 331, 587 [Google Scholar]
  56. Nelson, D., Springel, V., Pillepich, A., et al. 2019, Comput. Astrophys. Cosmol., 6, 1 [NASA ADS] [CrossRef] [Google Scholar]
  57. Planck Collaboration VI., 2020, A&A, 641, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  58. Prost, J., Thouvenin, P.-A., Sorce, J., & Chainais, P., 2025, hal-05042936 [Google Scholar]
  59. Rastegarnia, F., Mirtorabi, M., Moradi, R., Vafaei Sadr, A., & Wang, Y., 2022, MNRAS, 511, 4490 [Google Scholar]
  60. Reyes, E., & Estévez, P. A., 2020, in 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 1 [Google Scholar]
  61. Rezaei, S., McKean, J., Biehl, M., de Roo, W., & Lafontaine, A., 2022a, MNRAS, 517, 1156 [NASA ADS] [CrossRef] [Google Scholar]
  62. Rezaei, S., McKean, J. P., Biehl, M., & Javadpour, A., 2022b, MNRAS, 510, 5891 [NASA ADS] [CrossRef] [Google Scholar]
  63. Saadeh, D., Koyama, K., & Morice-Atkinson, X., 2024, MNRAS, 537, 448 [Google Scholar]
  64. Sanborn, S., Shewmake, C., Olshausen, B., & Hillar, C., 2022, arXiv e-prints [arXiv:2209.03416] [Google Scholar]
  65. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., et al. 2020, in International conference on machine learning, PMLR, 8459 [Google Scholar]
  66. Shamir, L., 2009, MNRAS, 399, 1367 [Google Scholar]
  67. Shandarin, S. F., & Zeldovich, Y. B., 1989, Rev Mod. Phys., 61, 185 [Google Scholar]
  68. Siddique, N., Paheding, S., Elkin, C. P., & Devabhaktuni, V., 2021, Ieee Access, 9, 82031 [Google Scholar]
  69. Springel, V., 2005, MNRAS, 364, 1105 [Google Scholar]
  70. Springel, V., Yoshida, N., & White, S. D., 2001, New Astron., 6, 79 [Google Scholar]
  71. Sweere, S. F., Valtchanov, I., Lieu, M., et al. 2022, MNRAS, 517, 4054 [Google Scholar]
  72. Tanimura, H., Aghanim, N., Bonjean, V., & Zaroubi, S., 2022, A&A, 662, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  73. Tassev, S., Zaldarriaga, M., & Eisenstein, D. J., 2013, J. Cosmol. Astropart. Phys., 2013, 036 [CrossRef] [Google Scholar]
  74. Ullmo, M., 2022, PhD thesis, Université Paris-Saclay, France [Google Scholar]
  75. Ullmo, M., Decelle, A., & Aghanim, N., 2021, A&A, 651, A46 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  76. Vafaei Sadr, A., Vos, E. E., Bassett, B. A., et al. 2019, MNRAS, 484, 2793 [CrossRef] [Google Scholar]
  77. Villaescusa-Navarro, F., Anglés-Alcázar, D., Genel, S., et al. 2021, ApJ, 915, 71 [NASA ADS] [CrossRef] [Google Scholar]
  78. Villar, V. A., Cranmer, M., Berger, E., et al. 2021, ApJS, 255, 24 [NASA ADS] [CrossRef] [Google Scholar]
  79. Vogelsberger, M., Genel, S., Springel, V., et al. 2014, MNRAS, 444, 1518 [Google Scholar]
  80. Wiewel, S., Becher, M., & Thuerey, N., 2019, in Computer Graphics Forum (Hoboken: Wiley Online Library), 38, 71 [Google Scholar]
  81. Wilde, J., Serjeant, S., Bromley, J. M., et al. 2022, MNRAS, 512, 3464 [Google Scholar]
  82. Wu, J. F., & Kragh Jespersen, C., 2023, arXiv e-prints [arXiv:2306.12327] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.