| Issue |
A&A
Volume 704, December 2025
|
|
|---|---|---|
| Article Number | L6 | |
| Number of page(s) | 8 | |
| Section | Letters to the Editor | |
| DOI | https://doi.org/10.1051/0004-6361/202556304 | |
| Published online | 02 December 2025 | |
Letter to the Editor
An optical-to-infrared study of type II SN 2024ggi at nebular times
1
Institut d’Astrophysique de Paris, CNRS-Sorbonne Université, 98 bis boulevard Arago, F-75014 Paris, France
2
Department of Physics and Astronomy, FI-20014 University of Turku, Turku, Finland
3
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
4
Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA
⋆ Corresponding author: dessart@iap.fr
Received:
8
July
2025
Accepted:
8
November
2025
We present 0.3–21 μm observations at ∼275 d and ∼400 d of type II supernova (SN) 2024ggi that combined ground-based optical and near-infrared data from the Keck I/II telescopes and space-based infrared data from the James Webb Space Telescope. Although the optical regions dominate the observed flux, SN 2024ggi is bright at infrared wavelengths (65% and 35% fall each side of 1 μm). SN 2024ggi exhibits a plethora of emission lines from H, He, intermediate-mass elements (O, Na, Mg, S, Ar, and Ca), and iron-group elements (IGEs; Fe, Co, and Ni). The width of all lines is essentially the same, which suggests efficient macroscopic chemical mixing of the inner ejecta at ≲2000 km s−1 and little mixing of 56Ni at higher velocities. Molecular emission in the infrared range is dominated by the CO fundamental, which radiates about 5% of the total SN luminosity. A molecule-free radiative-transfer model based on a standard explosion of a red supergiant star (i.e., ∼1051 erg, 0.06 M⊙ of 56Ni from a 15.2 M⊙ progenitor) yields a satisfactory match throughout the optical and infrared at both epochs. The SN 2024ggi CO luminosity is comparable to the fractional decay power absorbed in the model C/O-rich shell. An accounting for CO cooling would likely resolve the model overestimate of the [O I] 0.632 μm flux. The relative weakness of the molecular emission in SN 2024ggi and the good overall match obtained with our molecule-free model suggests negligible microscopic mixing; about 95% of the SN luminosity is radiated by atoms and ions. The lines from IGEs, which form from explosion ashes at these late times, are ideal diagnostics of the magnitude of 56Ni mixing in core-collapse SN ejecta. Stable Ni, which was identified in SN 2024ggi (e.g., [Ni II] 6.634 μm), is probably a common product of explosions of massive stars.
Key words: line: formation / radiative transfer / supernovae: general
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.