Open Access
| Issue |
A&A
Volume 700, August 2025
|
|
|---|---|---|
| Article Number | A260 | |
| Number of page(s) | 19 | |
| Section | Extragalactic astronomy | |
| DOI | https://doi.org/10.1051/0004-6361/202555303 | |
| Published online | 26 August 2025 | |
- Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, ApJ, 716, 30 [Google Scholar]
- Abdollahi, S., Acero, F., Ackermann, M., et al. 2020, ApJS, 247, 33 [Google Scholar]
- Abdollahi, S., Acero, F., Baldini, L., et al. 2022, ApJS, 260, 53 [NASA ADS] [CrossRef] [Google Scholar]
- Agarwal, A. 2023, ApJ, 946, 109 [Google Scholar]
- Ajello, M., Baldini, L., Ballet, J., et al. 2022, ApJS, 263, 24 [NASA ADS] [CrossRef] [Google Scholar]
- Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. 2019, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery& Data Mining, 2623 [Google Scholar]
- Bhatta, G., Gharat, S., Borthakur, A., & Kumar, A. 2024, MNRAS, 528, 976 [Google Scholar]
- Boettcher, M., & Dermer, C. D. 2002, ApJ, 564, 86 [CrossRef] [Google Scholar]
- Böttcher, M. 2006, Astrophys. Space Sci., 309, 95 [Google Scholar]
- Böttcher, M., Reimer, A., & Sweeney, K. 2013, ApJ, 768, 54 [NASA ADS] [CrossRef] [Google Scholar]
- Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
- Cavaliere, A., & D’Elia, V. 2002, ApJ, 571, 226 [NASA ADS] [CrossRef] [Google Scholar]
- Chen, T., & Guestrin, C. 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785 [Google Scholar]
- Cortes, C., & Vapnik, V. 1995, Mach. Learn., 20, 273 [Google Scholar]
- Fabian, A. C. 2012, ARA&A, 50, 455 [Google Scholar]
- Ghisellini, G., Tavecchio, F., Foschini, L., & Ghirlanda, G. 2011, MNRAS, 414, 2674 [NASA ADS] [CrossRef] [Google Scholar]
- Giommi, P., & Padovani, P. 2015, MNRAS, 450, 2404 [Google Scholar]
- Hollmann, N., Müller, S., Eggensperger, K., & Hutter, F. 2023, in International Conference on Learning Representations (ICLR) [Google Scholar]
- Hollmann, N., Müller, S., Purucker, L., et al. 2025, Nature, 637, 319 [CrossRef] [Google Scholar]
- Hornik, K., Stinchcombe, M., & White, H. 1989, Neural Networks, 2, 359 [CrossRef] [Google Scholar]
- Kang, S.-J., Zheng, Y.-G., & Wu, Q. 2023, MNRAS, 525, 3201 [NASA ADS] [CrossRef] [Google Scholar]
- Kang, S.-J., Lyu, B., Wu, Q., Zheng, Y.-G., & Fan, J. 2024, ApJ, 962, 122 [NASA ADS] [CrossRef] [Google Scholar]
- Kang, S., Ren, S., Zheng, Y., & Wu, Q. 2025, ApJ, 980, 122 [Google Scholar]
- Mahesh, T. R., Vinoth Kumar, V., Dhilip Kumar, V., et al. 2023, Patterns, 4, 100835 [Google Scholar]
- Massaro, E., Maselli, A., Leto, C., et al. 2015, Astrophy. Space Sci., 357, 75 [Google Scholar]
- McInnes, L., Healy, J., Saul, N., & Großberger, L. 2018, J. Open Source Software, 3, 861 [CrossRef] [Google Scholar]
- Mingaliev, M., Sotnikova, Y., Mufakharov, T., Erkenov, A. K., & Udovitskiy, R. Y. 2015, Astrophys. Bull., 70, 264 [Google Scholar]
- Padovani, P., & Giommi, P. 1995, ApJ, 444, 567 [NASA ADS] [CrossRef] [Google Scholar]
- Paliya, V. S., Domínguez, A., Ajello, M., Olmo-García, A., & Hartmann, D. 2021, ApJS, 253, 46 [NASA ADS] [CrossRef] [Google Scholar]
- Prandini, E., & Ghisellini, G. 2022, Galaxies, 10, 35 [NASA ADS] [CrossRef] [Google Scholar]
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. 2018, in Advances in Neural Information Processing Systems, 31 [Google Scholar]
- Ren, S. S., Zhou, R. X., Zheng, Y. G., Kang, S. J., & Wu, Q. 2024, A&A, 685, A140 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ricci, C., & Trakhtenbrot, B. 2023, Nat. Astron., 7, 1282 [Google Scholar]
- Sahakyan, N., Vardanyan, V., & Khachatryan, M. 2022, MNRAS, 519, 3000 [Google Scholar]
- Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 [NASA ADS] [Google Scholar]
- Sklearn 2025, Model Evaluation, scikit-learn 1.4.2 documentation, https://scikit-learn.org/stable/modules/model_evaluation.html [Google Scholar]
- Urry, C. M., & Padovani, P. 1995, Publ. Astron. Soc. Pac., 107, 803 [NASA ADS] [CrossRef] [Google Scholar]
- Yuan, F., & Narayan, R. 2014, ARA&A, 52, 529 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.