Open Access
Issue
A&A
Volume 701, September 2025
Article Number A150
Number of page(s) 27
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202554025
Published online 12 September 2025
  1. Abdurro’uf, Accetta, K., Aerts, C., et al. 2022, ApJS, 259, 35 [NASA ADS] [CrossRef] [Google Scholar]
  2. Aerts, C. 2021, Rev. Mod. Phys., 93, 015001 [Google Scholar]
  3. Aerts, C., & Tkachenko, A. 2024, A&A, 692, R1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Bahdanau, D., Cho, K., & Bengio, Y. 2014, in International Conference on Learning Representations 2015 [arXiv:1409.0473] [Google Scholar]
  5. Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002 [Google Scholar]
  6. Bengio, Y., Courville, A., & Vincent, P. 2013, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798 [CrossRef] [Google Scholar]
  7. Blagorodnova, N., Neill, J. D., Walters, R., et al. 2018, PASP, 130, 035003 [Google Scholar]
  8. Blažko, S. 1907, Astron. Nachr., 175, 325 [Google Scholar]
  9. Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
  10. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. 2000, SIGMOD Rec., 29, 93 [Google Scholar]
  11. Briquet, M., Hubrig, S., De Cat, P., et al. 2007, A&A, 466, 269 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Buck, T., & Schwarz, C. 2024, in NIPS 2024 Workshop on Machine Learning and the Physical Sciences [arXiv:2410.16081] [Google Scholar]
  13. Burgess, C. P., Higgins, I., Pal, A., et al. 2018, in NIPS 2017 Workshop on Learning Disentangled Representations [arXiv:1804.03599] [Google Scholar]
  14. Carrasco, J. M., Weiler, M., Jordi, C., et al. 2021, A&A, 652, A86 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Carnerero, M. I., Raiteri, C. M., Rimoldini, L., et al. 2023, A&A, 674, A24 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Catelan, M. 2009, Ap&SS, 320, 261 [Google Scholar]
  17. Catelan, M., & Smith, H. A. 2015, Pulsating Stars (John Wiley & Sons) [Google Scholar]
  18. Chen, T., & Guestrin, C. 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’16, 785 [Google Scholar]
  19. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. 2014, in NIPS 2014 Deep Learning and Representation Learning Workshop [arXiv:1412.3555] [Google Scholar]
  20. Clementini, G., Ripepi, V., Garofalo, A., et al. 2023, A&A, 674, A18 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, Res. Astron. Astrophys., 12, 1197 [Google Scholar]
  22. Davies, D. L., & Bouldin, D. W. 1979, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-1, 224 [Google Scholar]
  23. De Angeli, F., Weiler, M., Montegriffo, P., et al. 2023, A&A, 674, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. DESI Collaboration (Adame, A. G., et al.) 2024, AJ, 168, 58 [NASA ADS] [CrossRef] [Google Scholar]
  25. Donoso-Oliva, C., Becker, I., Protopapas, P., et al. 2023, A&A, 670, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  26. Evans, D. W., Eyer, L., Busso, G., et al. 2023, A&A, 674, A4 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  27. Eyer, L., & Mowlavi, N. 2008, in Journal of Physics Conference Series, 118, 012010 [Google Scholar]
  28. Eyer, L., Audard, M., Holl, B., et al. 2023, A&A, 674, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  29. Falcon, W., Borovec, J., Wälchli, A., et al. 2020, https://zenodo.org/record/3828935 [Google Scholar]
  30. Fritzewski, D. J., Vanrespaille, M., Aerts, C., et al. 2025, A&A, 698, A253 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Gaia Collaboration (De Ridder, J., et al.) 2023a, A&A, 674, A36 [CrossRef] [EDP Sciences] [Google Scholar]
  33. Gaia Collaboration (Vallenari, A., et al.) 2023b, A&A, 674, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  34. Garrison, L. H., Foreman-Mackey, D., Shih, Y.-h., & Barnett, A. 2024, RNAAS, 8, 250 [Google Scholar]
  35. Gavras, P., Rimoldini, L., Nienartowicz, K., et al. 2023, A&A, 674, A22 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Ginsburg, A., Sipőcz, B. M., Brasseur, C. E., et al. 2019, AJ, 157, 98 [Google Scholar]
  37. Glorot, X., Bordes, A., & Bengio, Y. 2011, in Proceedings of Machine Learning Research, 15, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (PMLR), 315 [Google Scholar]
  38. Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (The MIT Press) [Google Scholar]
  39. Gui, J., Chen, T., Zhang, J., et al. 2024, IEEE Trans. Pattern Anal. Mach. Intell., 46, 9052 [Google Scholar]
  40. Guiglion, G., Nepal, S., Chiappini, C., et al. 2024, A&A, 682, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  41. Guo, W., Wang, J., & Wang, S. 2019, IEEE Access, 7, 63373 [CrossRef] [Google Scholar]
  42. He, K., Zhang, X., Ren, S., & Sun, J. 2015, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), IEEE, 1026 [Google Scholar]
  43. Heinze, A. N., Tonry, J. L., Denneau, L., et al. 2018, AJ, 156, 241 [Google Scholar]
  44. Hendrycks, D., & Gimpel, K. 2016, arXiv e-prints [arXiv:1606.08415] [Google Scholar]
  45. Hey, D., & Aerts, C. 2024, A&A, 688, A93 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  46. Hochreiter, S., Schmidhuber, J., & Elvezia, C. 1997, Neural Computat., 9, 1735 [Google Scholar]
  47. Holl, B., Fabricius, C., Portell, J., et al. 2023, A&A, 674, A25 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  48. Hu, W., & Tan, Y. 2018, in AAAI Workshops, 245 [Google Scholar]
  49. Huertas-Company, M., Sarmiento, R., & Knapen, J. H. 2023, RAS Tech. Instrum., 2, 441 [NASA ADS] [CrossRef] [Google Scholar]
  50. Jamal, S., & Bloom, J. S. 2020, ApJS, 250, 30 [NASA ADS] [CrossRef] [Google Scholar]
  51. Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2019, MNRAS, 486, 1907 [NASA ADS] [Google Scholar]
  52. Jiang, Z., Zheng, Y., Tan, H., Tang, B., & Zhou, H. 2017, in Proceedings of the 26th International Joint Conference on Artificial Intelligence, 1965 [Google Scholar]
  53. Kingma, D. P., & Ba, J. 2015, in International Conference on Learning Representations (ICLR) [arXiv:1412.6980] [Google Scholar]
  54. Kingma, D. P., & Welling, M. 2014, in International Conference on Learning Representations (ICLR) [arXiv:1312.6114] [Google Scholar]
  55. Laroche, A., & Speagle, J. S. 2023, in International Conference in Machine Learning, Workshop on Machine Learning for Astrophysics [arXiv:2307.06378] [Google Scholar]
  56. Lebzelter, T., Mowlavi, N., Lecoeur-Taibi, I., et al. 2023, A&A, 674, A15 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  57. Lei Ba, J., Kiros, J. R., & Hinton, G. E. 2016, arXiv e-prints [arXiv:1607.06450] [Google Scholar]
  58. Liu, X., Zhang, F., Hou, Z., et al. 2021, IEEE Trans. Knowledge Data Eng., 35, 857 [Google Scholar]
  59. Lomb, N. R. 1976, Ap&SS, 39, 447 [Google Scholar]
  60. Luongo, E., Ripepi, V., Marconi, M., et al. 2024, A&A, 690, L17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  61. Mahabal, A., Sheth, K., Gieseke, F., et al. 2017, in 2017 IEEE symposium Series on Computational Intelligence (SSCI), IEEE, 1 [Google Scholar]
  62. Martínez-Palomera, J., Bloom, J. S., & Abrahams, E. S. 2022, AJ, 164, 263 [CrossRef] [Google Scholar]
  63. Mombarg, J. S. G., Aerts, C., Van Reeth, T., & Hey, D. 2024, A&A, 691, A131 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  64. Mowlavi, N., Holl, B., Lecoeur-Taïbi, I., et al. 2023, A&A, 674, A16 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  65. Nair, V., & Hinton, G. E. 2010, in Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807 [Google Scholar]
  66. Naul, B., Bloom, J. S., Pérez, F., & van der Walt, S. 2018, Nat. Astron., 2, 151 [NASA ADS] [CrossRef] [Google Scholar]
  67. Oosterhoff, P. T. 1939, The Observatory, 62, 104 [NASA ADS] [Google Scholar]
  68. Oosterhoff, P. T. 1944, Bull. Astron. Inst. Netherlands, 10, 55 [NASA ADS] [Google Scholar]
  69. Pang, G., Shen, C., Cao, L., & van den Hengel, A. 2021, ACM Comput. Surv., 54 [Google Scholar]
  70. Parker, L., Lanusse, F., Golkar, S., et al. 2024, MNRAS, 531, 4990 [Google Scholar]
  71. Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information Processing Systems (NIPS), 32 (Curran Associates, Inc.), 8024 [Google Scholar]
  72. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  73. Prudil, Z., Dékány, I., Catelan, M., et al. 2019, MNRAS, 484, 4833 [NASA ADS] [Google Scholar]
  74. Radford, A., Kim, J. W., Hallacy, C., et al. 2021, in International Conference on Machine Learning, PMLR, 8748 [Google Scholar]
  75. Rimoldini, L., Eyer, L., Audard, M., et al. 2022, Gaia DR3 documentation Chapter 10: Variability, Gaia DR3 documentation, European Space Agency; Gaia Data Processing and Analysis Consortium. Online at https://gea.esac.esa.int/archive/documentation/GDR3/index.html, 10 [Google Scholar]
  76. Rimoldini, L., Holl, B., Gavras, P., et al. 2023, A&A, 674, A14 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  77. Rizhko, M., & Bloom, J. S. 2025, AJ, 170, 28 [Google Scholar]
  78. Ruz-Mieres, D. 2024 https://doi.org/10.5281/zenodo.11617977 [Google Scholar]
  79. Sánchez-Sáez, P., Lira, H., Martí, L., et al. 2021, AJ, 162, 206 [CrossRef] [Google Scholar]
  80. Sartoretti, P., Marchal, O., Babusiaux, C., et al. 2023, A&A, 674, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  81. Scargle, J. D. 1982, ApJ, 263, 835 [Google Scholar]
  82. Skarka, M., Prudil, Z., & Jurcsik, J. 2020, MNRAS, 494, 1237 [NASA ADS] [CrossRef] [Google Scholar]
  83. Smith, H. A. 1995, Cambr. Astrophys. Ser., 27 [Google Scholar]
  84. Soraisam, M. D., Saha, A., Matheson, T., et al. 2020, ApJ, 892, 112 [Google Scholar]
  85. The Multimodal Universe Collaboration (Audenaert, J., et al.) 2024, in The Thirty-eight Conference on Neural Information Processing Systems (NIPS) Datasets and Benchmarks Track [arXiv:2412.02527] [Google Scholar]
  86. Udalski, A., Szymanski, M. K., Soszynski, I., & Poleski, R. 2008, Acta Astron., 58, 69 [NASA ADS] [Google Scholar]
  87. Zhang, G., Helfer, T., Gagliano, A. T., Mishra-Sharma, S., & Ashley Villar, V. 2024, Mach. Learn. Sci. Technol., 5, 045069 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.