Open Access
Issue
A&A
Volume 703, November 2025
Article Number A217
Number of page(s) 18
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202553691
Published online 18 November 2025
  1. Aniyan, A. K., & Thorat, K. 2017, ApJS, 230, 20 [Google Scholar]
  2. Assran, M., Caron, M., Misra, I., et al. 2022, in Computer Vision - ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXI (Berlin, Heidelberg: Springer-Verlag), 456 [Google Scholar]
  3. Assran, M., Duval, Q., Misra, I., et al. 2023, in 2023 IEEE/CVF CVPR (Vancouver, BC, Canada: IEEE), 15619 [Google Scholar]
  4. Balestriero, R., & LeCun, Y. 2024, in ICML [Google Scholar]
  5. Bao, H., Dong, L., Piao, S., & Wei, F. 2022, in ICLR [Google Scholar]
  6. Bardes, A., Ponce, J., & LeCun, Y. 2022, in ICLR [Google Scholar]
  7. Becker, B., Vaccari, M., Prescott, M., & Grobler, T. 2021, MNRAS, 503, 1828 [NASA ADS] [CrossRef] [Google Scholar]
  8. Burke, C. J., Aleo, P. D., Chen, Y.-C., et al. 2019, MNRAS, 490, 3952 [NASA ADS] [CrossRef] [Google Scholar]
  9. Cao, J., Xu, T., Deng, Y., et al. 2024, A&A, 683, A42 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Caron, M., Misra, I., Mairal, J., et al. 2020, in Advances in Neural Information Processing Systems, 33 (Curran Associates, Inc.), 9912 [Google Scholar]
  11. Caron, M., Touvron, H., Misra, I., et al. 2021, in 2021 IEEE/CVF ICCV, 9630 [Google Scholar]
  12. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. 2020, in International conference on machine learning (PMLR), 1597 [Google Scholar]
  13. Chen, T., Bianco, M., Tolley, E., et al. 2024a, MNRAS, 532, 2615 [Google Scholar]
  14. Chen, X., Ding, M., Wang, X., et al. 2024b, Int. J. Comput. Vis., 132, 208 [Google Scholar]
  15. Cohen, M., & Lu, W. 2021, Astron. Comput., 37, 100507 [Google Scholar]
  16. Cornu, D., Salomé, P., Semelin, B., et al. 2024, A&A, 690, A211 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Dagli, R. 2023, Astroformer: More Data might not be all you need, Learning to Predict Galaxy Morphologies with Limited Data [Google Scholar]
  18. Deng, J., Dong, W., Socher, R., et al. 2009, in 2009 IEEE Conference on CVPR, 248 [Google Scholar]
  19. Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 [NASA ADS] [CrossRef] [Google Scholar]
  20. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2020, in Proceedings of the Ninth International Conference on Learning Representations [Google Scholar]
  21. Drozdova, M., Kinakh, V., Bait, O., et al. 2023, A&A, 683 [Google Scholar]
  22. Farias, H., Ortiz, D., Damke, G., Jaque Arancibia, M., & Solar, M. 2020, Astron. Comput., 33, 100420 [NASA ADS] [CrossRef] [Google Scholar]
  23. Grill, J.-B., Strub, F., Altché, F., et al. 2020, in Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS'20 (Red Hook, NY, USA: Curran Associates Inc.), 21271 [Google Scholar]
  24. Ha, D., & Schmidhuber, J. 2018, in Advances in Neural Information Processing Systems, 31 (Curran Associates, Inc.) [Google Scholar]
  25. Hausen, R., & Robertson, B. 2022, in ML4PS Workshop (arXiv), [arXiv:2201.04714] [astro-ph] [Google Scholar]
  26. Hayat, M. A., Stein, G., Harrington, P., Lukic, Z., & Mustafa, M. 2021, ApJ, 911, L33 [NASA ADS] [CrossRef] [Google Scholar]
  27. He, K., Zhang, X., Ren, S., & Sun, J. 2016, in 2016 IEEE Conference on CVPR, 770 [Google Scholar]
  28. He, K., Chen, X., Xie, S., et al. 2022, in 2022 IEEE/CVF Conference on CVPR, 15979 [Google Scholar]
  29. Hui, W., Robert Jia, Z., Li, H., & Wang, Z. 2022, J. Phys.: Conf. Ser., 2402, 012009 [Google Scholar]
  30. Jia, C., Yang, Y., Xia, Y., et al. 2021, in International conference on machine learning (PMLR), 4904 [Google Scholar]
  31. Jia, P., Zheng, Y., Wang, M., & Yang, Z. 2023, Astron. Comput., 42, 100687 [Google Scholar]
  32. Kalapos, A., & Gyires-Tóth, B. 2024, in 2024 ICMLA, 448 [Google Scholar]
  33. Kalvankar, S., Pandit, H., & Parwate, P. 2021, Galaxy Morphology Classification sing EfficientNet Architectures, [arXiv:2008.13611] [cs] [Google Scholar]
  34. Kirillov, A., Mintun, E., Ravi, N., et al. 2023, in Proceedings of the IEEE/CVF ICCV, 4015 [Google Scholar]
  35. Kumar, R., Sarker, M. K., & Islam, S. R. 2023, in Deep Learning Theory and Applications, eds. D. Conte, A. Fred, O. Gusikhin, & C. Sansone (Cham: Springer Nature Switzerland), 115 [Google Scholar]
  36. Lastufka, E., Bait, O., Taran, O., et al. 2024, A&A, 690, A310 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Li, Z., Yu, C., Xiao, J., Long, M., & Cui, C. 2021, Astron. Comput., 36, 100482 [Google Scholar]
  38. Li, L. H., Zhang, P., Zhang, H., et al. 2022a, in 2022 IEEE/CVF Conference on CVPR (New Orleans, LA, USA: IEEE), 10955 [Google Scholar]
  39. Li, Y., Mao, H., Girshick, R., & He, K. 2022b, in European Conference on Computer Vision (Springer), 280 [Google Scholar]
  40. Lin, J. Y.-Y., Liao, S.-M., Huang, H.-J., Kuo, W.-T., & Ou, O. H.-M. 2022, in ML4PS Workshop (arXiv), [arXiv:2110.01024] [Google Scholar]
  41. Lochner, M., & Bassett, B. A. 2021, Astron. Comput., 36, 100481 [NASA ADS] [CrossRef] [Google Scholar]
  42. Marcel, S., & Rodriguez, Y. 2010, in Proceedings of the 18th ACM international conference on Multimedia, MM’10 (New York, NY, USA: Association for Computing Machinery), 1485 [Google Scholar]
  43. Maslej-Krešnáková, V., El Bouchefry, K., & Butka, P. 2021, MNRAS, 505, 1464 [Google Scholar]
  44. Merz, G., Liu, Y., Burke, C. J., et al. 2023, MNRAS, 526, 1122 [NASA ADS] [CrossRef] [Google Scholar]
  45. Müller, S. G., & Hutter, F. 2021, in Proceedings of the IEEE/CVF International Conference on Computer Vision, 774 [Google Scholar]
  46. Ndung’u, S., Grobler, T., Wijnholds, S. J., Karastoyanova, D., & Azzopardi, G. 2023, New Astron. Rev., 97, 101685 [Google Scholar]
  47. Oquab, M., Darcet, T., Moutakanni, T., et al. 2024, Trans. Mach. Learn. Res. [Google Scholar]
  48. Pandya, S., Patel, P., O., F., & Blazek, J. 2023, in ML4PS Workshop (arXiv), [arXiv:2311.01500] [Google Scholar]
  49. Porter, F. A. M., & Scaife, A. M. M. 2023, RAS Tech. Instrum., 2, 293 [NASA ADS] [CrossRef] [Google Scholar]
  50. Radford, A., Kim, J. W., Hallacy, C., et al. 2021, in International conference on machine learning (PMLR), 8748 [Google Scholar]
  51. Ranzinger, M., Heinrich, G., Kautz, J., & Molchanov, P. 2024, in Proceedings of the IEEE/CVF Conference on CVPR, 12490 [Google Scholar]
  52. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. 2016, in 2016 IEEE Conference on CVPR (Las Vegas, NV, USA: IEEE), 779 [Google Scholar]
  53. Reiman, D. M., & Göhre, B. E. 2019, MNRAS, 485, 2617 [NASA ADS] [CrossRef] [Google Scholar]
  54. Ren, S., He, K., Girshick, R., & Sun, J. 2017, IEEE Trans. Pattern Anal. Mach. Intell., 39, 1137 [Google Scholar]
  55. Riggi, S., Magro, D., Sortino, R., et al. 2023, Astron. Comput., 42, 100682 [NASA ADS] [CrossRef] [Google Scholar]
  56. Schmidt, K., Geyer, F., Fröse, S., et al. 2022, A&A, 664, A134 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  57. Slijepcevic, I. V., Scaife, A. M. M., Walmsley, M., et al. 2024, RAS Tech. Instrum., 3, 19 [NASA ADS] [CrossRef] [Google Scholar]
  58. Sortino, R., Magro, D., Fiameni, G., et al. 2023, Exp. Astron., [arXiv:2303.04006] [cs] [Google Scholar]
  59. Taran, O., Bait, O., Dessauges-Zavadsky, M., et al. 2023, A&A, 674, A161 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  60. Tishby, N., Pereira, F. C., & Bialek, W. 2000, in Proc. of the 37-th Annual Allerton Conference on Communication, Control and Computing, (arXiv), 368, [arXiv:physics/0004057] [Google Scholar]
  61. Urechiatu, R., & Frincu, M. 2024, Universe, 10, 230 [Google Scholar]
  62. Vafaei Sadr, A., Vos, E. E., Bassett, B. A., et al. 2019, MNRAS, 484, 2793 [CrossRef] [Google Scholar]
  63. Villar, V. A., Cranmer, M., Berger, E., et al. 2021, ApJS, 255, 24 [NASA ADS] [CrossRef] [Google Scholar]
  64. Voloshynovskiy, S., Taran, O., Kondah, M., Holotyak, T., & Rezende, D. 2020, Entropy, 22, 943 [NASA ADS] [CrossRef] [Google Scholar]
  65. Vos, E. E., Francois Luus, P. S., Finlay, C. J., & Bassett, B. A. 2019, in 2019 IEEE 29th International Workshop on MLSP, 1 [Google Scholar]
  66. Walmsley, M., Lintott, C., Géron, T., et al. 2022, MNRAS, 509, 3966 [Google Scholar]
  67. Wei, S., Lu, W., Dai, W., et al. 2024, AJ, 167, 29 [Google Scholar]
  68. Wong, O. I., Garon, A., Alger, M., et al. 2024, MNRAS, stae2790 [Google Scholar]
  69. Wu, C., Wong, O. I., Rudnick, L., et al. 2019, MNRAS, 482, 1211 [NASA ADS] [CrossRef] [Google Scholar]
  70. Yu, J., Wang, Z., Vasudevan, V., et al. 2022, Trans. Mach. Learn. Res. [Google Scholar]
  71. Zbontar, J., Jing, L., Misra, I., LeCun, Y., & Deny, S. 2021, in Proceedings of the 38th ICML (PMLR), 12310 [Google Scholar]
  72. Zhai, X., Kolesnikov, A., Houlsby, N., & Beyer, L. 2022, in Proceedings of the IEEE/CVF CCVPR, 12104 [Google Scholar]
  73. Zhai, X., Mustafa, B., Kolesnikov, A., & Beyer, L. 2023, in Proceedings of the IEEE/CVF ICCV, 11975 [Google Scholar]
  74. Zhou, J., Wei, C., Wang, H., et al. 2022, in ICLR [Google Scholar]
  75. Zhu, X.-P., Dai, J.-M., Bian, C.-J., et al. 2019, Astrophys. Space Sci., 364, 55 [NASA ADS] [CrossRef] [Google Scholar]
  76. Zhou, X., Gong, Y., Deng, F., et al. 2023, MNRAS, 521, 278 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.