Open Access
Issue
A&A
Volume 703, November 2025
Article Number A41
Number of page(s) 13
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202554289
Published online 31 October 2025
  1. Alcock, C., Allsman, R., Axelrod, T., et al. 1996, AJ, 111, 1146 [NASA ADS] [CrossRef] [Google Scholar]
  2. Alcock, C., Allsman, R., Alves, D., et al. 1997a, AJ, 114, 326 [NASA ADS] [CrossRef] [Google Scholar]
  3. Alcock, C., Allsman, R. A., Alves, D., et al. 1997b, ApJ, 482, 89 [Google Scholar]
  4. Alcock, C., Allsman, R., Alves, D., et al. 1999, ApJ, 511, 185 [Google Scholar]
  5. Alcock, C., Allsman, R. A., Alves, D. R., et al. 2000, ApJ, 542, 281 [NASA ADS] [CrossRef] [Google Scholar]
  6. Alcock, C., Allsman, R., Alves, D. R., et al. 2002, ApJ, 573, 338 [NASA ADS] [CrossRef] [Google Scholar]
  7. Alcock, C., Allsman, R., Alves, D., et al. 2003, VizieR Online Data Catalog: Variable Stars in the Large Magellanic Clouds (MACHO, 2001), VizieR Online Data Catalog: II/247 [Google Scholar]
  8. Allam Jr, T., & McEwen, J. D. 2024, RASTI, 3, 209 [Google Scholar]
  9. Becker, I., Pichara, K., Catelan, M., et al. 2020, MNRAS, 493, 2981 [NASA ADS] [CrossRef] [Google Scholar]
  10. Becker, I., Protopapas, P., Catelan, M., & Pichara, K. 2025, A&A, 694, A183 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Boone, K. 2019, AJ, 158, 257 [NASA ADS] [CrossRef] [Google Scholar]
  12. Brown, T., Mann, B., Ryder, N., et al. 2020, Adv. Neural Inf. Process. Syst., 33, 1877 [Google Scholar]
  13. Cabrera-Vives, G., Moreno-Cartagena, D., Astorga, N., et al. 2024, A&A, 689, A289 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Cádiz-Leyton, M., Cabrera-Vives, G., Protopapas, P., Moreno-Cartagena, D., & Donoso-Oliva, C. 2024, in Proc. Int. Conf. Mach. Learn. (ICML) Workshop [Google Scholar]
  15. Cádiz-Leyton, M., Cabrera-Vives, G., Protopapas, P., et al. 2025, A&A, 699, A168 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Carion, N., Massa, F., Synnaeve, G., et al. 2020, in Proc. Eur. Conf. Comput. Vis. (ECCV), 213 [Google Scholar]
  17. Carrasco-Davis, R., Cabrera-Vives, G., Förster, F., et al. 2019, PASP, 131, 108006 [NASA ADS] [CrossRef] [Google Scholar]
  18. Charnock, T., & Moss, A. 2017, ApJ, 837, L28 [NASA ADS] [CrossRef] [Google Scholar]
  19. Chen, H., Wang, Y., Guo, T., et al. 2021a, in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 12299 [Google Scholar]
  20. Chen, X., Yan, B., Zhu, J., et al. 2021b, in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 8126 [Google Scholar]
  21. Cheng, B., Schwing, A., & Kirillov, A. 2021, Adv. Neural Inf. Process. Syst., 34, 17864 [Google Scholar]
  22. Cho, K., van Merriënboer, B., Gulcehre, C., et al. 2014, in Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP), 1724 [Google Scholar]
  23. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2019, in Proc. NAACL-HLT, 4171 [Google Scholar]
  24. Donalek, C., Djorgovski, S. G., Mahabal, A. A., et al. 2013, in Proc. IEEE Int. Conf. Big Data, 35 [Google Scholar]
  25. Donoso-Oliva, C., Cabrera-Vives, G., Protopapas, P., Carrasco-Davis, R., & Estévez, P. A. 2021, MNRAS, 505, 6069 [CrossRef] [Google Scholar]
  26. Donoso-Oliva, C., Becker, I., Protopapas, P., et al. 2023, A&A, 670, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  27. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2021, in Proc. Int. Conf. Learn. Represent. (ICLR) [Google Scholar]
  28. Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2012, in Proc. IAU Symp. 285: New Horizons in Time-Domain Astronomy, 306 [Google Scholar]
  29. Fraga, B. M. O., Bom, C. R., Santos, A., et al. 2024, A&A, 689, A208 [Google Scholar]
  30. Gómez, C., Neira, M., Hernandez Hoyos, M., Arbeláez, P., & Forero-Romero, J. E. 2020, MNRAS, 499, 3130 [CrossRef] [Google Scholar]
  31. Graham, M. J., Djorgovski, S., Drake, A. J., et al. 2014, MNRAS, 439, 703 [NASA ADS] [CrossRef] [Google Scholar]
  32. Hambleton, K. M., et al. 2023, PASP, 135, 105002 [NASA ADS] [CrossRef] [Google Scholar]
  33. Han, K., Wang, Y., Chen, H., et al. 2023, IEEE Trans. Pattern Anal. Mach. Intell., 45, 87 [CrossRef] [Google Scholar]
  34. Hochreiter, S., & Schmidhuber, J. 1997, Neural Comput., 9, 1735 [CrossRef] [Google Scholar]
  35. Ivezic, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  36. Jamal, S., & Bloom, J. S. 2020, ApJS, 250, 30 [NASA ADS] [CrossRef] [Google Scholar]
  37. Jiang, Y., Chang, S., & Wang, Z. 2021, Adv. Neural Inf. Process. Syst., 34, 14745 [Google Scholar]
  38. Karpenka, N. V., Feroz, F., & Hobson, M. 2013, MNRAS, 429, 1278 [NASA ADS] [CrossRef] [Google Scholar]
  39. Kessler, R., Narayan, G., Avelino, A., et al. 2019, PASP, 131, 094501 [NASA ADS] [CrossRef] [Google Scholar]
  40. Khan, S., Naseer, M., Hayat, M., et al. 2022, ACM Comput. Surv., 54 [Google Scholar]
  41. Kim, D.-W., Protopapas, P., Byun, Y.-I., et al. 2011, ApJ, 735, 68 [NASA ADS] [CrossRef] [Google Scholar]
  42. Kim, D.-W., Protopapas, P., Bailer-Jones, C. A., et al. 2014, A&A, 566, A43 [CrossRef] [EDP Sciences] [Google Scholar]
  43. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, Proc. IEEE, 86, 2278 [Google Scholar]
  44. Li, J., Li, D., Savarese, S., & Hoi, S. 2023, in Proc. Int. Conf. Mach. Learn. (ICML), 19730 [Google Scholar]
  45. Li, Z., Li, S., & Yan, X. 2024, Adv. Neural Inf. Process. Syst., 36 [Google Scholar]
  46. Liu, Z., Lin, Y., Cao, Y., et al. 2021, in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 10012 [Google Scholar]
  47. Liu, Z., Hu, H., Lin, Y., et al. 2022, in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 12009 [Google Scholar]
  48. Lochner, M., McEwen, J. D., Peiris, H. V., Lahav, O., & Winter, M. K. 2016, ApJS, 225, 31 [NASA ADS] [CrossRef] [Google Scholar]
  49. Liu, Y., Zhang, Y., Wang, Y., et al. 2023, IEEE Trans. Neural Netw. Learn. Syst., 35, 7478 [Google Scholar]
  50. Mahabal, A., Sheth, K., Gieseke, F., et al. 2017, in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), 1 [Google Scholar]
  51. Möller, A., & de Boissière, T. 2020, MNRAS, 491, 4277 [CrossRef] [Google Scholar]
  52. Monsalves, N., Jaque Arancibia, M., Bayo, A., et al. 2024, A&A, 691, A106 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  53. Moreno-Cartagena, D., Cabrera-Vives, G., Protopapas, P., et al. 2023, in Proc. Int. Conf. Mach. Learn. (ICML) Workshop [Google Scholar]
  54. Morvan, M., Nikolaou, N., Yip, K. H., & Waldmann, I. 2022, in Proc. Int. Conf. Mach. Learn. (ICML) Workshop [Google Scholar]
  55. Muthukrishna, D., Narayan, G., Mandel, K. S., Biswas, R., & Hložek, R. 2019, PASP, 131, 118002 [NASA ADS] [CrossRef] [Google Scholar]
  56. Narayan, G., & Team, T. E. 2023, BAAS, 55 [Google Scholar]
  57. Naul, B., Bloom, J. S., Pérez, F., & Van Der Walt, S. 2018, Nat. Astron., 2, 151 [NASA ADS] [CrossRef] [Google Scholar]
  58. Nun, I., Protopapas, P., Sim, B., et al. 2017, Astrophysics Source Code Library [record ascl:1711.017] [Google Scholar]
  59. Pan, J., Ting, Y.-S., & Yu, J. 2022, in Proc. Int. Conf. Mach. Learn. (ICML) Workshop [Google Scholar]
  60. Pasquet-Itam, J., & Pasquet, J. 2018, A&A, 611, A97 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  61. Pasquet, J., Pasquet, J., Chaumont, M., & Fouchez, D. 2019, A&A, 627, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  62. Pichara, K., Protopapas, P., Kim, D.-W., Marquette, J.-B., & Tisserand, P. 2012, MNRAS, 427, 1284 [NASA ADS] [CrossRef] [Google Scholar]
  63. Pimentel, Ó., Estévez, P. A., & Förster, F. 2022, AJ, 165, 18 [Google Scholar]
  64. Qu, H., & Sako, M. 2022, AJ, 163, 57 [NASA ADS] [CrossRef] [Google Scholar]
  65. Qu, H., Sako, M., Möller, A., & Doux, C. 2021, AJ, 162, 67 [NASA ADS] [CrossRef] [Google Scholar]
  66. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. 2018, Improving language understanding by generative pre-training, openAI Blog [Google Scholar]
  67. Radford, A., Kim, J. W., Hallacy, C., et al. 2021, in Proc. Int. Conf. Mach. Learn. (ICML), 8748 [Google Scholar]
  68. Richards, J. W., Starr, D. L., Butler, N. R., et al. 2011, ApJ, 733, 10 [NASA ADS] [CrossRef] [Google Scholar]
  69. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. 2022, in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 10684 [Google Scholar]
  70. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, Nature, 323, 533 [Google Scholar]
  71. Sánchez-Sáez, P., Reyes, I., Valenzuela, C., et al. 2021, AJ, 161, 141 [CrossRef] [Google Scholar]
  72. Szklenár, T., Bódi, A., Tarczay-Nehéz, D., et al. 2020, ApJ, 897, L12 [CrossRef] [Google Scholar]
  73. Szklenár, T., Bódi, A., Tarczay-Nehéz, D., et al. 2022, ApJ, 938, 37 [CrossRef] [Google Scholar]
  74. Udalski, A., Szymanski, M. K., Soszynski, I., & Poleski, R. 2008, Acta Astron., 58, 69 [NASA ADS] [Google Scholar]
  75. Udalski, A., Szymanski, M. K., & Szymanski, G. 2015, Acta Astron., 65, 1 [Google Scholar]
  76. Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, Adv. Neural Inf. Process. Syst., 30 [Google Scholar]
  77. Villar, V., Berger, E., Miller, G., et al. 2019, ApJ, 884, 83 [NASA ADS] [CrossRef] [Google Scholar]
  78. Villar, V. A., Hosseinzadeh, G., Berger, E., et al. 2020, ApJ, 905, 94 [NASA ADS] [CrossRef] [Google Scholar]
  79. Wang, H., Zhu, Y., Adam, H., Yuille, A., & Chen, L.-C. 2021, in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 5463 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.