Open Access
Issue
A&A
Volume 703, November 2025
Article Number A13
Number of page(s) 13
Section Extragalactic astronomy
DOI https://doi.org/10.1051/0004-6361/202555584
Published online 18 November 2025
  1. Barden, M., Haussler, B., Peng, C. Y., Mcintosh, D. H., & Guo, Y. 2012, MNRAS, 422, 449 [CrossRef] [Google Scholar]
  2. Bekki, K. 2020, MNRAS, 493, 502 [Google Scholar]
  3. Belfiore, F., Ginolfi, M., Blanc, G., et al. 2025, A&A, 694, A212 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Blanton, M. R., & Moustakas, J. 2009, ARA&A, 47, 159 [Google Scholar]
  5. Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503 [Google Scholar]
  6. Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 [NASA ADS] [CrossRef] [Google Scholar]
  7. Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682 [NASA ADS] [CrossRef] [Google Scholar]
  8. Casey, C. M., Kartaltepe, J. S., Drakos, N. E., et al. 2023, ApJ, 954, 31 [NASA ADS] [CrossRef] [Google Scholar]
  9. Chabrier, G. 2003, PASP, 115, 763 [Google Scholar]
  10. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. E. 2020a, ArXiv e-prints [arXiv:2002.05709] [Google Scholar]
  11. Chen, X., Fan, H., Girshick, R. B., & He, K. 2020b, ArXiv e-prints [arXiv:2003.04297] [Google Scholar]
  12. Cheng, T.-Y., Huertas-Company, M., Conselice, C. J., et al. 2021, MNRAS, 503, 4446 [NASA ADS] [CrossRef] [Google Scholar]
  13. Ćiprijanović, A., Lewis, A., Pedro, K., et al. 2023, Mach. Learn.: Sci. Technol., 4, 025013 [CrossRef] [Google Scholar]
  14. Conselice, C. J. 2003, ApJS, 147, 1 [NASA ADS] [CrossRef] [Google Scholar]
  15. Conselice, C. J., Bershady, M. A., & Jangren, A. 2000, ApJ, 529, 886 [NASA ADS] [CrossRef] [Google Scholar]
  16. Cook, M., Bandi, B., Philipsborn, S., et al. 2024, MNRAS, 535, 2129 [Google Scholar]
  17. Dai, Y., Xu, J., Song, J., et al. 2023, ApJS, 268, 34 [NASA ADS] [CrossRef] [Google Scholar]
  18. Deng, J., Yuan, G., Zhou, H., Wu, H., & Tan, C. 2024, Ap&SS, 369, 99 [Google Scholar]
  19. Dickinson, H., Fortson, L., Lintott, C., et al. 2018, ApJ, 853, 194 [Google Scholar]
  20. Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 [NASA ADS] [CrossRef] [Google Scholar]
  21. Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D., & Fischer, J. L. 2018, MNRAS, 476, 3661 [Google Scholar]
  22. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2020, ArXiv e-prints [arXiv:2010.11929] [Google Scholar]
  23. Fang, G., Ba, S., Gu, Y., et al. 2023, AJ, 165, 35 [NASA ADS] [CrossRef] [Google Scholar]
  24. Fang, G., Dai, Y., Lin, Z., et al. 2025, A&A, 693, A141 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  25. Fernandes, T., Vieira, S., Onofre, A., et al. 2023, Classical Quantum Gravity, 40, 195018 [Google Scholar]
  26. Ferreira, L., Conselice, C. J., Sazonova, E., et al. 2023, ApJ, 955, 94 [NASA ADS] [CrossRef] [Google Scholar]
  27. Fisher, D. B., & Drory, N. 2008, AJ, 136, 773 [NASA ADS] [CrossRef] [Google Scholar]
  28. Flügge, S. 1959, Handbuch der Physik, 11 [Google Scholar]
  29. Freeman, P. E., Izbicki, R., Lee, A. B., et al. 2013, MNRAS, 434, 282 [NASA ADS] [CrossRef] [Google Scholar]
  30. Grill, J.-B., Strub, F., Altch’e, F., et al. 2020, ArXiv e-prints [arXiv:2006.07733] [Google Scholar]
  31. Gu, Y., Fang, G., Yuan, Q., Cai, Z., & Wang, T. 2018, ApJ, 855, 10 [Google Scholar]
  32. Hartigan, J. A., & Wong, M. A. 1979, J. R. Stat. Soc. C, 28, 100 [Google Scholar]
  33. Haussler, B., Vika, M., Bamford, S. P., et al. 2022, A&A, 664, A92 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  34. Hayat, M. A., Stein, G., Harrington, P., Lukić, Z., & Mustafa, M. 2021, ApJ, 911, L33 [NASA ADS] [CrossRef] [Google Scholar]
  35. He, K., Zhang, X., Ren, S., & Sun, J. 2016, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Google Scholar]
  36. He, Y., Lee, H., Liu, Y., Yang, L., & Zhang, L. 2025, PASP, 137, 024504 [Google Scholar]
  37. Hocking, A., Geach, J. E., Sun, Y., & Davey, N. 2018, MNRAS, 473, 1108 [CrossRef] [Google Scholar]
  38. Huang, K., Song, M., Ba, S., et al. 2025, Unsupervised Waste Classification By Dual-Encoder Contrastive Learning and Multi-Clustering Voting (DECMCV) [Google Scholar]
  39. Hubble, E. P. 1926, ApJ, 64, 321 [Google Scholar]
  40. Ilbert, O., Capak, P., Salvato, M., et al. 2008, ApJ, 690, 1236 [Google Scholar]
  41. Kauffmann, G., White, S. D. M., Heckman, T. M., et al. 2004, MNRAS, 353, 713 [Google Scholar]
  42. Kawinwanichakij, L., Papovich, C., Quadri, R. F., et al. 2017, ApJ, 847, 134 [NASA ADS] [CrossRef] [Google Scholar]
  43. Law, D. R., Steidel, C. C., Erb, D. K., et al. 2007, ApJ, 656, 1 [NASA ADS] [CrossRef] [Google Scholar]
  44. Lianou, S., Barmby, P., Mosenkov, A. A., Lehnert, M., & Karczewski, O. 2019, A&A, 631, A38 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  45. Liu, Z., Mao, H., & Wu, C.-Y., et al. 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11966 [Google Scholar]
  46. Liu, Z., Zhang, F., Cheng, L., et al. 2023, ArXiv e-prints [arXiv:2311.08995] [Google Scholar]
  47. Lotz, J. M., Primack, J., & Madau, P. 2004, AJ, 128, 163 [NASA ADS] [CrossRef] [Google Scholar]
  48. Lotz, J. M., Davis, M., Faber, S. M., et al. 2008, ApJ, 672, 177 [NASA ADS] [CrossRef] [Google Scholar]
  49. Luo, Z., Chen, J., Chen, Z., et al. 2025, Galaxy Morphology Classification via Deep Semi-Supervised Learning with Limited Labeled Data [Google Scholar]
  50. Maćkiewicz, A., & Ratajczak, W. 1993, Comput. Geosci., 19, 303 [CrossRef] [Google Scholar]
  51. Martin, G., Kaviraj, S., Hocking, A., Read, S. C., & Geach, J. E. 2020, MNRAS, 491, 1408 [Google Scholar]
  52. Massey, R., Stoughton, C., Leauthaud, A., et al. 2010, MNRAS, 401, 371 [NASA ADS] [CrossRef] [Google Scholar]
  53. McCabe, G. M., & Uddin, S. 2021, Am. Astron. Soc. Meet. Abstr., 237, 541.15 [Google Scholar]
  54. McInnes, L., & Healy, J. 2018, ArXiv e-prints [arXiv:1802.03426] [Google Scholar]
  55. Murtagh, F. 1983, Comput. J., 26, 354 [Google Scholar]
  56. Murtagh, F., & Legendre, P. 2014, J. Classif., 31, 274 [CrossRef] [Google Scholar]
  57. Oke, J. B., & Gunn, J. E. 1983, ApJ, 266, 713 [NASA ADS] [CrossRef] [Google Scholar]
  58. Omand, C. M. B., Balogh, M. L., & Poggianti, B. M. 2014, MNRAS, 440, 843 [NASA ADS] [CrossRef] [Google Scholar]
  59. Parker, L., Lanusse, F., Golkar, S., et al. 2024, MNRAS, 531, 4990 [Google Scholar]
  60. Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266 [Google Scholar]
  61. Pozzetti, L., Bolzonella, M., Zucca, E., et al. 2010, A&A, 523, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  62. Prevot, M. L., Lequeux, J., Maurice, E., Prevot, L., & Rocca-Volmerange, B. 1984, A&A, 132, 389 [Google Scholar]
  63. Reza, M. 2021, Astron. Comput., 37, 100492 [Google Scholar]
  64. Rieke, M. J., Kelly, D. M., Misselt, K., et al. 2023, PASP, 135, 028001 [CrossRef] [Google Scholar]
  65. Rodriguez-Gomez, V., Snyder, G. F., Lotz, J. M., et al. 2018, MNRAS, 483, 4140 [Google Scholar]
  66. Ronneberger, O., Fischer, P., & Brox, T. 2015, arXiv e-prints [arXiv:1505.04597] [Google Scholar]
  67. Rose, C., Kartaltepe, J. S., Snyder, G. F., et al. 2023, ApJ, 942, 54 [NASA ADS] [CrossRef] [Google Scholar]
  68. Schawinski, K., Urry, C. M., Simmons, B. D., et al. 2014, MNRAS, 440, 889 [Google Scholar]
  69. Schmidhuber, J. 2015, Neural Networks, 61, 85 [CrossRef] [Google Scholar]
  70. Scoville, N., Aussel, H., Brusa, M., et al. 2007, ApJS, 172, 1 [Google Scholar]
  71. Serrano-Pérez, J., Díaz Hernández, R., & Sucar, L. E. 2024, Exp. Astron., 58, 5 [Google Scholar]
  72. Song, J., Fang, G., Ba, S., et al. 2024, ApJS, 272, 42 [NASA ADS] [CrossRef] [Google Scholar]
  73. Stoughton, C., Lupton, R. H., Bernardi, M., et al. 2002, AJ, 123, 485 [Google Scholar]
  74. Szegedy, C., Liu, W., Jia, Y., et al. 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1 [Google Scholar]
  75. Tohill, C., Bamford, S. P., Conselice, C. J., et al. 2024, ApJ, 962, 164 [NASA ADS] [CrossRef] [Google Scholar]
  76. van den Bergh, S. 1976, ApJ, 206, 883 [NASA ADS] [CrossRef] [Google Scholar]
  77. Walmsley, M., Smith, L., Lintott, C., et al. 2020, MNRAS, 491, 1554 [Google Scholar]
  78. Walmsley, M., Lintott, C., Géron, T., et al. 2022, MNRAS, 509, 3966 [Google Scholar]
  79. Weaver, J. R., Kauffmann, O. B., Ilbert, O., et al. 2022, ApJS, 258, 11 [NASA ADS] [CrossRef] [Google Scholar]
  80. Wright, R. H., Sabatke, D., & Telfer, R. 2022, in Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, eds. L. E. Coyle, S. Matsuura,& M. D. Perrin, SPIE Conf. Ser., 12180, 121803P [Google Scholar]
  81. Yang, J., Li, N., He, Z., et al. 2025, PASP, 137, 064504 [Google Scholar]
  82. Yao, X., Feng, X., Cheng, G., Han, J., & Guo, L. 2019, IGARSS 2019– 2019 IEEE International Geoscience and Remote Sensing Symposium, 1382 [Google Scholar]
  83. Yao, Y., Song, J., Kong, X., et al. 2023, AJ, 954, 113 [Google Scholar]
  84. Ye, R., Shen, S., de Souza, R. S., et al. 2025, MNRAS, 537, 640 [Google Scholar]
  85. Zhang, T., Ramakrishnan, R., & Livny, M. 1996, SIGMOD Rec., 25, 103 [CrossRef] [Google Scholar]
  86. Zhou, C., Gu, Y., Fang, G., & Lin, Z. 2022, AJ, 163, 86 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.