Open Access
Issue
A&A
Volume 704, December 2025
Article Number A249
Number of page(s) 10
Section Interstellar and circumstellar matter
DOI https://doi.org/10.1051/0004-6361/202557647
Published online 17 December 2025
  1. Agúndez, M., & Wakelam, V. 2013, Chem. Rev., 113, 8710 [Google Scholar]
  2. Agúndez, M., Fonfría, J. P., Cernicharo, J., Pardo, J. R., & Guélin, M. 2008, A&A, 479, 493 [Google Scholar]
  3. Agúndez, M., Cabezas, C., Marcelino, N., et al. 2025, A&A, 697, A82 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Allamandola, L., Tielens, A., & Barker, J. 1985, ApJ, 290, L25 [NASA ADS] [CrossRef] [Google Scholar]
  5. Anicich, V. G. 2003, Tech. Rep. JPL 03-19, Jet Propulsion Laboratory [Google Scholar]
  6. Balucani, N., Asvany, O., Chang, A., et al. 1999, J. Chem. Phys, 111, 7457 [Google Scholar]
  7. Balucani, N., Skouteris, D., Ceccarelli, C., et al. 2018, Mol. Astrophys, 13, 30 [Google Scholar]
  8. Betz, A. L. 1981, ApJ, 244, L103 [NASA ADS] [CrossRef] [Google Scholar]
  9. Bjornsson, R. 2022, ASH - a multiscale modelling program, https://ash.readthedocs.io/en/latest/, accessed: 2025-06-21 [Google Scholar]
  10. Cabezas, C., Agúndez, M., Pérez, C., et al. 2025, A&A, 701, L8 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Castiñeira Reis, M., Martínez Núñez, E., & Fernández Ramos, A. 2024, Sci. Adv., 10, eadq4077 [Google Scholar]
  12. Cernicharo, J., & Guélin, M. 1987, A&A, 176, 299 [Google Scholar]
  13. Cernicharo, J., Agúndez, M., Cabezas, C., et al. 2021a, A&A, 649, L15 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Cernicharo, J., Agúndez, M., Kaiser, R. I., et al. 2021b, A&A, 652, L9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Cernicharo, J., Agúndez, M., Kaiser, R. I., et al. 2021c, A&A, 655, L1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Cernicharo, J., Cabezas, C., Agúndez, M., et al. 2021d, A&A, 647, L3 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Cernicharo, J., Fuentetaja, R., Agúndez, M., et al. 2022, A&A, 663, L9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. Cernicharo, J., Cabezas, C., Pardo, J., et al. 2023, A&A, 672, L13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Cernicharo, J., Cabezas, C., Fuentetaja, R., et al. 2024, A&A, 690, L13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Chai, J.-D., & Head-Gordon, M. 2008, J. Chem. Phys., 128 [Google Scholar]
  21. Cooke, I. R., Gupta, D., Messinger, J. P., & Sims, I. R. 2020, ApJ, 891, L41 [Google Scholar]
  22. Doddipatla, S., Galimova, G. R., Wei, H., et al. 2021, Sci. Adv., 7, eabd4044 [Google Scholar]
  23. Eyler, J. R. 1984 [Google Scholar]
  24. Fonfría, J. P., Hinkle, K., Cernicharo, J., et al. 2017, ApJ, 835, 196 [CrossRef] [Google Scholar]
  25. Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al. 2016, Gaussian 16 Revision C.01, Gaussian Inc., Wallingford CT [Google Scholar]
  26. Fuentetaja, R., Agúndez, M., Cabezas, C., et al. 2024, A&A, 688, L15 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  27. García de la Concepción, J. G., Jiménez-Serra, I., Rivilla, V. M., et al. 2023, A&A, 673, A118 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  28. Georgievskii, Y., Miller, J. A., Burke, M. P., & Klippenstein, S. J. 2013, J. Phys. Chem. A, 117 [Google Scholar]
  29. Goettl, S. J., Ahmed, M., Mebel, A. M., & Kaiser, R. I. 2025a, Acc. Chem. Res., 5369 [Google Scholar]
  30. Goettl, S. J., Turner, A. M., Kaiser, R. I., et al. 2025b, Sci. Adv., 11 [Google Scholar]
  31. Guo, Y., Riplinger, C., Becker, U., et al. 2018, J. Chem. Phys., 148, 011101 [Google Scholar]
  32. Hariharan, P. C., & Pople, J. A. 1973, Theor. Chim. Acta., 28, 213 [Google Scholar]
  33. Hehre, W. J., Ditchfield, R., & Pople, J. A. 1972, J. Chem. Phys., 56, 2257 [Google Scholar]
  34. Heitkämper, J., Suchaneck, S., García de la Concepción, J., Kästner, J., & Molpeceres, G. 2022, Front. Astron. Space Sci., 9, 1020635 [Google Scholar]
  35. Herbst, E. 1982, Chem. Phys., 65, 185 [NASA ADS] [CrossRef] [Google Scholar]
  36. Herbst, E. 2021, Front. Astron. Space Sci, 8, 776942 [Google Scholar]
  37. Joblin, C., & Cernicharo, J. 2018, Science, 359 [Google Scholar]
  38. Jones, B. M., Zhang, F., Kaiser, R. I., et al. 2011, PNAS, 108, 452 [CrossRef] [Google Scholar]
  39. Kaiser, R., Vereecken, L., Peeters, J., Bettinger, H., & Schaefer, H. 2003, A&A, 406, 385 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Kaiser, R. I., Zhao, L., Lu, W., et al. 2021, J. Phys. Chem. Lett, 13 [Google Scholar]
  41. Kocheril, G., Zagorec-Marks, C., & Lewandowski, H. 2025, Nat. Astron., 1 [Google Scholar]
  42. Komatsu, Y., & Suzuki, T. 2022, ACS Earth Space Chem., 6, 2491 [Google Scholar]
  43. Komatsu, Y., & Furuya, K. 2023, ACS Earth Space Chem., 7, 1753 [Google Scholar]
  44. Lee, E. P., & Wright, T. G. 1999, Phys. Chem. Chem. Phys., 1, 219 [Google Scholar]
  45. Loison, J.-C., Rossi, C., Solem, N., et al. 2025, arXiv preprint [arXiv:2506.13290] [Google Scholar]
  46. Léger, A., & Puget, J. 1984, A&A, 137, 1 [Google Scholar]
  47. Maeda, S., & Harabuchi, Y. 2021, WIREs Computat. Mol. Sci., 11 [Google Scholar]
  48. Maeda, S., Ohno, K., & Morokuma, K. 2013, Phys. Chem. Chem. Phys., 15, 3683 [NASA ADS] [CrossRef] [Google Scholar]
  49. Maeda, S., Harabuchi, Y., Takagi, M., Taketsugu, T., & Morokuma, K. 2016, Chem. Rec., 16, 2232 [Google Scholar]
  50. Maeda, S., Harabuchi, Y., Takagi, M., et al. 2018, J. Comput. Chem, 39, 233 [Google Scholar]
  51. Maeda, S., Harabuchi, Y., Hayashi, H., & Mita, T. 2023a, Annu. Rev. Phys. Chem., 74, 287 [Google Scholar]
  52. Maeda, S., Harabuchi, Y., Sumiya, Y., et al. 2023b, GRRM23, see https://global.hpc.co.jp/products/grrm23/. Accessed: December 15, 2025 [Google Scholar]
  53. Martínez-Núñez, E., Barnes, G. L., Glowacki, D. R., et al. 2021, J. Comput. Chem, 42, 2036 [Google Scholar]
  54. Matthews, H. E., & Sears, T. J. 1983, ApJ, 272, 149 [NASA ADS] [CrossRef] [Google Scholar]
  55. McEwan, M. J., Scott, G. B., Adams, N. G., et al. 1999, ApJ, 513 [Google Scholar]
  56. McGuire, B. A., Burkhardt, A. M., Kalenskii, S., et al. 2018, Science, 359, 202 [Google Scholar]
  57. McGuire, B. A., Loomis, R. A., Burkhardt, A. M., et al. 2021a, Science, 371, 1265 [Google Scholar]
  58. McGuire, B. A., Loomis, R. A., Burkhardt, A. M., et al. 2021b, Science, 371 [Google Scholar]
  59. Millar, T., Walsh, C., Van de Sande, M., & Markwick, A. 2024, A&A, 682, A109 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  60. Miller, J. A., & Klippenstein, S. J. 2006, J. Phys. Chem. A, 110 [Google Scholar]
  61. Møller, C., & Plesset, M. S. 1934, Phys. Rev., 46, 618 [Google Scholar]
  62. Neese, F. 2025, Wiley Interdiscip. Rev. Comput. Mol. Sci., 15, e70019 [Google Scholar]
  63. Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. 2020, J. Chem. Phys., 152, 224108 [NASA ADS] [CrossRef] [Google Scholar]
  64. Papajak, E., Zheng, J., Xu, X., Leverentz, H. R., & Truhlar, D. G. 2011, J. Chem. Theory Comput., 7, 3027 [Google Scholar]
  65. Pechukas, P., & Light, J. C. 1965, J. Chem. Phys., 42, 3281 [NASA ADS] [CrossRef] [Google Scholar]
  66. Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D., & Windus, T. L. 2019, J. Chem. Inf. Model., 59, 4814 [Google Scholar]
  67. Purvis, G. D., & Bartlett, R. J. 1982, J. Chem. Phys., 76, 1910 [NASA ADS] [CrossRef] [Google Scholar]
  68. Rappoport, D., & Furche, F. 2010, J. Chem. Phys., 133, 134105 [Google Scholar]
  69. Riplinger, C., & Neese, F. 2013, J. Chem. Phys., 138 [Google Scholar]
  70. Sameera, W. M. C., Maeda, S., & Morokuma, K. 2016, Acc. Chem. Res., 49, 763 [Google Scholar]
  71. Silva, W., Cernicharo, J., Schlemmer, S., et al. 2023, A&A, 676, L1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  72. Smyth, K. C., Lias, S., & Ausloos, P. 1982, Combust. Sci. Technol., 28, 147 [CrossRef] [Google Scholar]
  73. Stewart, J. J. 2013, J. Mol. Model, 19, 1 [Google Scholar]
  74. Tennis, J., Loison, J.-C., & Herbst, E. 2021, ApJ, 922, 133 [NASA ADS] [CrossRef] [Google Scholar]
  75. Thomas, A. M., Doddipatla, S., Kaiser, R. I., Galimova, G. R., & Mebel, A. M. 2019, Sci. Rep., 9, 17595 [Google Scholar]
  76. Tielens, A. G. G. M. 2005, The Physics and Chemistry of the Interstellar Medium, 1st edn. (Cambridge University Press) [Google Scholar]
  77. Truhlar, D. G. 1969, J. Chem. Phys., 51, 4617 [Google Scholar]
  78. Türtscher, P. L., & Reiher, M. 2023, J. Chem. Inf. Model., 63, 147 [Google Scholar]
  79. Van de Vijver, R., & Zádor, J. 2020, Comput. Phys. Commun., 248, 106947 [Google Scholar]
  80. Wakelam, V., Herbst, E., & Selsis, F. 2006, A&A, 451, 551 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  81. Weigend, F., & Ahlrichs, R. 2005, Phys. Chem. Chem. Phys., 7 [Google Scholar]
  82. Wenzel, G., Gong, S., Xue, C., et al. 2024, Science, 386 [Google Scholar]
  83. Wenzel, G., Speak, T. H., Changala, P. B., et al. 2025a, Nat. Astron., 9, 262 [Google Scholar]
  84. Wenzel, G., Gong, S., Xue, C., et al. 2025b, ApJ, 984 [Google Scholar]
  85. Woods, P. M., Millar, T., Zijlstra, A., & Herbst, E. 2002, ApJ, 574, L167 [NASA ADS] [CrossRef] [Google Scholar]
  86. Woon, D. E., & Dunning, T. H. 1994, J. Chem. Phys., 100 [Google Scholar]
  87. Woon, D. E., & Herbst, E. 2009, ApJS, 185, 273 [Google Scholar]
  88. Yang, Z., He, C., Goettl, S. J., et al. 2024a, Nat. Astron., 8, 856 [Google Scholar]
  89. Yang, Z., Medvedkov, I. A., Goettl, S. J., et al. 2024b, PNAS, 121 [Google Scholar]
  90. Zhang, F., Parker, Dorianand Kim, Y. S., Kaiser, R. I., & Mebel, A. M. 2011, ApJ, 728, 141 [NASA ADS] [CrossRef] [Google Scholar]
  91. Zhang, Y.-F., Li, W., Wang, C.-Y., et al. 2025, Phys. Chem. Chem. Phys., 27, 4934 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.