Open Access
Issue
A&A
Volume 703, November 2025
Article Number A242
Number of page(s) 15
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202556339
Published online 20 November 2025
  1. Achanta, R., Shaji, A., Smith, K., et al. 2010, EPFL Technical Report 149300 [Google Scholar]
  2. Adadi, A., & Berrada, M. 2018, IEEE Access, 6, 52138 [Google Scholar]
  3. Aggarwal, C. C., Hinneburg, A., & Keim, D. A. 2001, in Database Theory, ICTD 200, 8th International Conference, London, UK, January 4–6, 2001, 8, 15 [Google Scholar]
  4. Aleo, P. D., Engel, A. W., Narayan, G., et al. 2024, ApJ, 974, 172 [Google Scholar]
  5. Baron, D., & Poznanski, D. 2017, MNRAS, 465, 4530 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bhambra, P., Joachimi, B., & Lahav, O. 2022, MNRAS, 511, 5032 [Google Scholar]
  7. Biecek, P., & Burzykowski, T. 2021, Explanatory Model Analysis (New York: Chapman and Hall/CRC) [Google Scholar]
  8. Bonse, M. J., Gebhard, T. D., Dannert, F. A., et al. 2025, AJ, 169, 194 [Google Scholar]
  9. Cardamone, C., Schawinski, K., Sarzi, M., et al. 2009, MNRAS, 399, 1191 [NASA ADS] [CrossRef] [Google Scholar]
  10. Chen, X., Kingma, D. P., Salimans, T., et al. 2016, arXiv e-prints [arXiv:1611.02731] [Google Scholar]
  11. Ciprijanovic, A., Lewis, A., Pedro, K., et al. 2023, Mach. Learn. Sci. Technol., 4, 025013 [Google Scholar]
  12. Crupi, R., Dilillo, G., Della Casa, G., Fiore, F., & Vacchi, A. 2024, Galaxies, 12, 12 [Google Scholar]
  13. Dey, B., Andrews, B. H., Newman, J. A., et al. 2022, MNRAS, 515, 5285 [NASA ADS] [CrossRef] [Google Scholar]
  14. Dold, D., & Fahrion, K. 2022, A&A, 663, A81 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Elvitigala, A., Navaratne, U. d., Rathnayake, S., & Dissanayaka, K. 2024, in 2024 9th International Conference on Information Technology Research (ICITR), 1 [Google Scholar]
  16. Engel, J., Hoffman, M., & Roberts, A. 2017, arXiv e-prints [arXiv:1711.05772] [Google Scholar]
  17. Etsebeth, V., Lochner, M., Walmsley, M., & Grespan, M. 2024, MNRAS, 529, 732 [Google Scholar]
  18. Foster, D. 2019, Generative Deep Learning (O’Reilly Media, Inc.) [Google Scholar]
  19. Géron, A. 2017, Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd edn., 4 (O’Reilly Media, Inc.), 10 [Google Scholar]
  20. Gilda, S., Lower, S., & Narayanan, D. 2021, ApJ, 916, 43 [NASA ADS] [CrossRef] [Google Scholar]
  21. Giles, D. K., & Walkowicz, L. 2020, MNRAS, 499, 524 [NASA ADS] [CrossRef] [Google Scholar]
  22. Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press), http://www.deeplearningbook.org [Google Scholar]
  23. Grassi, T., Padovani, M., Galli, D., et al. 2025, A&A, 702, A71 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Gully-Santiago, M., & Morley, C. V. 2022, ApJ, 941, 200 [Google Scholar]
  25. Heyl, J., Butterworth, J., & Viti, S. 2023a, MNRAS, 526, 404 [NASA ADS] [CrossRef] [Google Scholar]
  26. Heyl, J., Viti, S., & Vermariën, G. 2023b, Faraday Discuss., 245, 569 [Google Scholar]
  27. Ichinohe, Y., & Yamada, S. 2019, MNRAS, 487, 2874 [CrossRef] [Google Scholar]
  28. Ivezic, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  29. Jacobs, C., Glazebrook, K., Qin, A. K., & Collett, T. 2022, Astron. Comput., 38, 100535 [NASA ADS] [CrossRef] [Google Scholar]
  30. Kingma, D. P., & Welling, M. 2013, arXiv e-prints [arXiv: 1312.6114] [Google Scholar]
  31. Kornilov, M. V., Korolev, V. S., Malanchev, K. L., et al. 2025, Astron. Comput., 52, 100960 [Google Scholar]
  32. Li, G., Lu, Z., Wang, J., & Wang, Z. 2025, arXiv e-prints [arXiv:2502.15388] [Google Scholar]
  33. Liang, Y., Melchior, P., Hahn, C., et al. 2023, ApJ, 956, L6 [Google Scholar]
  34. Lieu, M. 2025, Universe, 11, 187 [Google Scholar]
  35. Lochner, M., & Bassett, B. A. 2021, Astron. Comput., 36, 100481 [NASA ADS] [CrossRef] [Google Scholar]
  36. Lochner, M., & Rudnick, L. 2025, AJ, 169, 121 [Google Scholar]
  37. Lucie-Smith, L., Adhikari, S., & Wechsler, R. H. 2022, MNRAS, 515, 2164 [Google Scholar]
  38. Lundberg, S., & Lee, S.-I. 2017, arXiv e-prints [arXiv: 1705.07874] [Google Scholar]
  39. Lundberg, S. M., Erion, G., Chen, H., et al. 2020, Nat. Mach. Intell., 2, 2522 [Google Scholar]
  40. Machado Poletti Valle, L. F., Avestruz, C., Barnes, D. J., et al. 2021, MNRAS, 507, 1468 [CrossRef] [Google Scholar]
  41. Molnar, C. 2020, Interpretable Machine Learning (lulu.com) [Google Scholar]
  42. Moravec, E., Alpasian, M., Amon, A., et al. 2019, in BAAS, 51, 8 [Google Scholar]
  43. Nicolaou, C., Nathan, R. P., Lahav, O., et al. 2025, arXiv e-prints [arXiv:2506.17376] [Google Scholar]
  44. Nun, I., Protopapas, P., Sim, B., & Chen, W. 2016, AJ, 152, 71 [NASA ADS] [CrossRef] [Google Scholar]
  45. Ocampo, I., Alestas, G., Nesseris, S., & Sapone, D. 2025, Phys. Rev. Lett., 134, 041002 [Google Scholar]
  46. Pandey, C., Angryk, R. A., Georgoulis, M. K., & Aydin, B. 2023, Lect. Notes Comput. Sci., 14276, 567 [CrossRef] [Google Scholar]
  47. Pasquato, M., Trevisan, P., Askar, A., et al. 2024, ApJ, 965, 89 [NASA ADS] [CrossRef] [Google Scholar]
  48. Patel, A. A. 2019, Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data, 2nd edn., 4 (O’Reilly Media, Inc.), 10 [Google Scholar]
  49. Portillo, S. K. N., Parejko, J. K., Vergara, J. R., & Connolly, A. J. 2020, AJ, 160, 45 [Google Scholar]
  50. Quispe-Huaynasi, F., Roig, F., Holanda, N., et al. 2025, AJ, 169, 332 [Google Scholar]
  51. Reis, I., Poznanski, D., Baron, D., Zasowski, G., & Shahaf, S. 2018, MNRAS, 476, 2117 [CrossRef] [Google Scholar]
  52. Reis, I., Rotman, M., Poznanski, D., Prochaska, J. X., & Wolf, L. 2021, Astron. Comput., 34, 100437 [NASA ADS] [CrossRef] [Google Scholar]
  53. Ribeiro, M. T., Singh, S., & Guestrin, C. 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 (New York, NY, USA: Association for Computing Machinery), 1135 [Google Scholar]
  54. Rogers, B., Lintott, C. J., Croft, S., Schwamb, M. E., & Davenport, J. R. A. 2024, AJ, 167, 118 [Google Scholar]
  55. Sahakyan, N. 2024, arXiv e-prints [arXiv:2412.10093] [Google Scholar]
  56. Sánchez-Sáez, P., Lira, H., Martí, L., et al. 2021, AJ, 162, 206 [CrossRef] [Google Scholar]
  57. Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 [Google Scholar]
  58. Semenikhin, T. A., Kornilov, M. V., Pruzhinskaya, M. V., et al. 2025, Astron. Comput., 51, 100919 [Google Scholar]
  59. Shafkat, I. 2018, Intuitively Understanding Variational Autoencoders, https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf, accessed: 2022-05-08 [Google Scholar]
  60. Siemiginowska, A., Eadie, G., Czekala, I., et al. 2019, BAAS, 51, 355 [Google Scholar]
  61. Sundararajan, M., Taly, A., & Yan, Q. 2017, arXiv e-prints [arXiv: 1703.01365] [Google Scholar]
  62. Vafaei Sadr, A., Bassett, B. A., & Sekyi, E. 2023, RAS Tech. Instrum., 2, 586 [Google Scholar]
  63. Villaescusa-Navarro, F., Ding, J., Genel, S., et al. 2022, ApJ, 929, 132 [NASA ADS] [CrossRef] [Google Scholar]
  64. Wetzel, S. J., Ha, S., Iten, R., Klopotek, M., & Liu, Z. 2025, arXiv e-prints [arXiv:2503.23616] [Google Scholar]
  65. Wolpert, D., & Macready, W. 1997, IEEE Trans. Evol. Computat., 1, 67 [Google Scholar]
  66. Ye, S., Cui, W.-Y., Li, Y.-B., Luo, A. L., & Jones, H. R. A. 2025, A&A, 697, A107 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Yip, K. H., Changeat, Q., Nikolaou, N., et al. 2021, AJ, 162, 195 [NASA ADS] [CrossRef] [Google Scholar]
  68. Zhao, S., Song, J., & Ermon, S. 2017, arXiv e-prints [arXiv:1706.02262] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.